观点 | 三大特征选择策略,有效提升你的机器学习水准
选自Medium
机器之心编译
参与:刘晓坤、黄小天
特征选择是数据获取中最关键的一步,可惜很多教程直接跳过了这一部分。本文将分享有关特征选择的 3 个杰出方法,有效提升你的机器学习水准。
「输入垃圾数据,输出垃圾结果」——每个机器学习工程师
什么是特征选择?面对试图解决的实际问题之时,什么特征将帮助你建模并不总是很清晰。伴随这一问题的还有大量数据问题,它们有时是多余的,或者不甚相关。特征选择是这样一个研究领域,它试图通过算法完成重要特征的选取。
为什么不把全部特征直接丢进机器学习模型呢?
现实世界的问题并没有开源数据集,其中更没有与问题相关的信息。而特征选择有助于你最大化特征相关性,同时降低非相关性,从而增加了构建较好模型的可能性,并减小模型的整体大小。
顶级的特征选择方法
比如说我们要预测水上公园的票价走势;为此我们决定查看天气数据、冰淇淋销量、咖啡销量以及季节状况。
从下表中我们可以看到,夏季的门票明显比其他季节好卖,而冬季卖不出一张票。咖啡销量整年中比较稳定,冰淇淋则一年之中都有销量,但旺季是 6 月。
表 1:文中使用的各项虚构数据。
图 1:各项虚构数据的图示对比。
我们想要预测水上公园票价,但很可能不需要所有数据以得到最佳结果。数据存在 N 个维度,并且 K 数值会给出最佳结果。但是不同大小的子集之间存在大量的结合。
我们的目标是减少维度数量,同时不损失预测能力。让我们退回一步,看看那些我们能使用的工具。
穷举搜索
这项技术能 100% 保证找到最好的可能特征以建立模型。我们认为它非常可行,因为它将搜索所有可能的特征组合并找到返回模型最低点的组合。
在我们的例子中有 15 个可能的特征组合可供搜索。我使用公式 (2^n—1) 计算组合的数量。这个方法在特征数量较少的时候可行,但如果你有 3000 个特征就不可行了。
幸运的是,还有一个稍微好点的方法可用。
随机特征选择
大多数情形中,随机特征选择可以工作的很好。如果要将特征数减少 50%,只需随机选择其中 50% 的特征并删除。
模型训练完成之后,检验模型的性能,重复这个过程直到你满意为止。遗憾的是,这仍然是个蛮力方法。
当需要处理一个很大的特征集,又不能削减规模的时候,该怎么办?
最小冗余最大关联特征选择
将所有的想法整合起来就能得出我们的算法,即 mRMR 特征选择。算法背后的考虑是,同时最小化特征的冗余并最大化特征的关联。因此,我们需要计算冗余和关联的方程:
让我们用虚构的数据写一个快速脚本来实现 mRMR:
我并没有对结果抱有什么期待,冰淇淋的销量看起来能很精确地对售票量建模,而气温不可以。在这个例子中,似乎只需要一个变量就可以精确地对售票量建模,但在实际的问题中肯定不是这样的。
mRMR 代码地址:https://files.fm/u/bshx9hay
结论
你应该对这些特征选择方法有更好的理解,它们能帮助你减少模型特征的总数量,并保留对目标来说最重要的特征。
原文链接:https://medium.com/towards-data-science/three-effective-feature-selection-strategies-e1f86f331fb1
本文为机器之心编译,转载请联系本公众号获得授权。
✄------------------------------------------------
加入机器之心(全职记者/实习生):hr@jiqizhixin.com
投稿或寻求报道:content@jiqizhixin.com
广告&商务合作:bd@jiqizhixin.com
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/

随时掌握互联网精彩
- 1 中俄友谊故事世代流传 7904139
- 2 中国首位!赵心童夺冠斯诺克世锦赛 7809641
- 3 男子出海打捞上来的生蚝带商品标签 7713858
- 4 再上19天班又放假了 7617892
- 5 “短剧女王”道歉 7523696
- 6 95后在海底捞办婚礼 餐费仅花2万多 7427442
- 7 重大政策转变 巴基斯坦宣布新禁令 7331008
- 8 《蛮好的人生》大结局太癫了 7239079
- 9 155亿深圳手机富商 在非洲遭遇强敌 7142593
- 10 关税带来的不确定性才是最昂贵的 7043379