学界 | 百度提出冷聚变方法:使用语言模型训练Seq2Seq模型
选自arXiv
机器之心编译
参与:路雪、蒋思源
近日,百度研究院发表论文提出冷聚变(Cold Fusion)方法,即在 Seq2Seq 模型训练过程中加入语言模型,实现更快地收敛、更好的泛化,以及仅需少量标注数据即可实现向新域的完全迁移。机器之心对这篇论文进行了介绍。
论文地址:https://arxiv.org/abs/1708.06426

摘要:带有注意力机制的序列到序列(Seq2Seq)模型在多项生成自然语言句子的任务中表现优秀,如机器翻译、图像字幕生成和语音识别。在以语言模型的形式利用非标注数据后,其性能进一步提高。在本研究中,我们提供了一种冷聚变(Cold Fusion)方法,并展示该方法在语音识别中的有效性。我们展示了使用冷聚变方法的 Seq2Seq 模型能够更好地利用语言信息,并且能够实现(1)更快收敛、更好的泛化;(2)使用少于 10% 的标注数据进行训练时能几乎完成向新的域的完全迁移。

表 1. 深度聚变(Deep Fusion)和冷聚变的预测示例。

图 1. 基线模型(橙色)和我们提出的模型(紫色)在开发集上的交叉熵损失和迭代数之间的函数关系。使用语言模型的训练可以一定程度上加速收敛。

表 3. 论文中讨论的不同模型的语音识别结果。

表 4. 解码器维度对该模型的性能影响。冷聚变模型的性能随着解码器变小而缓慢下降,这证明冷聚变模型的有效任务能力比无聚变的模型大得多。

表 5. 微调后的声学模型在目标训练数据的子集上的结果。最后一行代表在所有目标域数据上进行训练的注意力模型。
结论
在该研究中,我们展示了一种新型 Seq2Seq 通用模型架构,其解码器和预训练的语言模型一起训练。我们研究并确认,架构变化对该模型充分利用语言模型中的信息至关重要,这也帮助模型实现更好地泛化;通过利用 RNN 语言模型,冷聚变模型产生的词错率比深度聚变模型低 18%。此外,我们证明冷聚变模型能够更轻松地迁移至新的域,仅需要 10% 的标注数据,即几乎可完全迁移至新的域。
本文为机器之心编译,转载请联系本公众号获得授权。
✄------------------------------------------------
加入机器之心(全职记者/实习生):hr@jiqizhixin.com
投稿或寻求报道:content@jiqizhixin.com
广告&商务合作:bd@jiqizhixin.com
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/
关注网络尖刀微信公众号随时掌握互联网精彩
- 1 中国经济向世界提供“机遇清单” 7904439
- 2 再次提醒:中国公民近期避免前往日本 7808659
- 3 狂甩45次 无汞体温计才降到36℃ 7713661
- 4 2025这些“经济”持续成长壮大 7616348
- 5 金正恩单膝跪地吊唁俄驻朝大使 7524410
- 6 “九天”无人机成功首飞 7424764
- 7 网警:男子AI生成车展低俗视频被拘 7333744
- 8 “无名”男子医院躺7年半 警方介入 7237288
- 9 北冥有鱼竟然是真的 7142478
- 10 寒潮来袭!多地气温将创下半年来新低 7039224







机器之心
