干货 | 训练一个神经网络 让她能认得我

百家 作者:原力AI学院 2017-08-25 10:52:05

这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点意思的项目。


项目的github地址:github 喜欢的话就给个Star吧。


想要她认得我,就需要给她一些我的照片,让她记住我的人脸特征,为了让她区分我和其他人,还需要给她一些其他人的照片做参照,所以就需要两组数据集来让她学习,如果想让她多认识几个人,那多给她几组图片集学习就可以了。下面就开始让我们来搭建这个能认识我的”她”。


运行环境


下面为软件的运行搭建系统环境。


系统: window或linux


软件: python 3.x 、 tensorflow


python支持库:


tensorflow:

pip install tensorflow      #cpu版本
pip install rensorflow-gpu  #gpu版本,需要cuda与cudnn的支持,不清楚的可以选择cpu版

numpy:

pip install numpy

opencv:

pip install opencv-python

dlib:

pip install dlib


获取本人图片集


获取本人照片的方式当然是拍照了,我们需要通过程序来给自己拍照,如果你自己有照片,也可以用那些现成的照片,但前提是你的照片足够多。这次用到的照片数是10000张,程序运行后,得坐在电脑面前不停得给自己的脸摆各种姿势,这样可以提高训练后识别自己的成功率,在程序中加入了随机改变对比度与亮度的模块,也是为了提高照片样本的多样性。


程序中使用的是dlib来识别人脸部分,也可以使用opencv来识别人脸,在实际使用过程中,dlib的识别效果比opencv的好,但opencv识别的速度会快很多,获取10000张人脸照片的情况下,dlib大约花费了1小时,而opencv的花费时间大概只有20分钟。opencv可能会识别一些奇怪的部分,所以综合考虑之后我使用了dlib来识别人脸。


get_my_faces.py

import cv2
import dlib
import os
import sys
import random

output_dir = './my_faces'
size = 64

if not os.path.exists(output_dir):
    os.makedirs(output_dir)

# 改变图片的亮度与对比度
def relight(img, light=1, bias=0):
    w = img.shape[1]
    h = img.shape[0]
    #image = []
    for i in range(0,w):
        for j in range(0,h):
            for c in range(3):
                tmp = int(img[j,i,c]*light + bias)
                if tmp > 255:
                    tmp = 255
                elif tmp < 0:
                    tmp = 0
                img[j,i,c] = tmp
    return img

#使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()
# 打开摄像头 参数为输入流,可以为摄像头或视频文件
camera = cv2.VideoCapture(0)

index = 1
while True:
    if (index <= 10000):
        print('Being processed picture %s' % index)
        # 从摄像头读取照片
        success, img = camera.read()
        # 转为灰度图片
        gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # 使用detector进行人脸检测
        dets = detector(gray_img, 1)

        for i, d in enumerate(dets):
            x1 = d.top() if d.top() > 0 else 0
            y1 = d.bottom() if d.bottom() > 0 else 0
            x2 = d.left() if d.left() > 0 else 0
            y2 = d.right() if d.right() > 0 else 0

            face = img[x1:y1,x2:y2]
            # 调整图片的对比度与亮度, 对比度与亮度值都取随机数,这样能增加样本的多样性
            face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50))

            face = cv2.resize(face, (size,size))

            cv2.imshow('image', face)

            cv2.imwrite(output_dir+'/'+str(index)+'.jpg', face)

            index += 1
        key = cv2.waitKey(30) & 0xff
        if key == 27:
            break
    else:
        print('Finished!')
        break

在这里我也给出一个opencv来识别人脸的代码示例:

import cv2
import os
import sys
import random

out_dir = './my_faces'
if not os.path.exists(out_dir):
    os.makedirs(out_dir)


# 改变亮度与对比度
def relight(img, alpha=1, bias=0):
    w = img.shape[1]
    h = img.shape[0]
    #image = []
    for i in range(0,w):
        for j in range(0,h):
            for c in range(3):
                tmp = int(img[j,i,c]*alpha + bias)
                if tmp > 255:
                    tmp = 255
                elif tmp < 0:
                    tmp = 0
                img[j,i,c] = tmp
    return img


# 获取分类器
haar = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# 打开摄像头 参数为输入流,可以为摄像头或视频文件
camera = cv2.VideoCapture(0)

n = 1
while 1:
    if (n <= 10000):
        print('It`s processing %s image.' % n)
        # 读帧
        success, img = camera.read()

        gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        faces = haar.detectMultiScale(gray_img, 1.3, 5)
        for f_x, f_y, f_w, f_h in faces:
            face = img[f_y:f_y+f_h, f_x:f_x+f_w]
            face = cv2.resize(face, (64,64))
            '''
            if n % 3 == 1:
                face = relight(face, 1, 50)
            elif n % 3 == 2:
                face = relight(face, 0.5, 0)
            '''
            face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50))
            cv2.imshow('img', face)
            cv2.imwrite(out_dir+'/'+str(n)+'.jpg', face)
            n+=1
        key = cv2.waitKey(30) & 0xff
        if key == 27:
            break
    else:
        break


获取其他人脸图片集


需要收集一个其他人脸的图片集,只要不是自己的人脸都可以,可以在网上找到,这里我给出一个我用到的图片集:


网站地址:http://vis-www.cs.umass.edu/lfw/

图片集下载:http://vis-www.cs.umass.edu/lfw/lfw.tgz

先将下载的图片集,解压到项目目录下的input_img目录下,也可以自己指定目录(修改代码中的input_dir变量)


接下来使用dlib来批量识别图片中的人脸部分,并保存到指定目录下


set_other_people.py

# -*- codeing: utf-8 -*-
import sys
import os
import cv2
import dlib

input_dir = './input_img'
output_dir = './other_faces'
size = 64

if not os.path.exists(output_dir):
    os.makedirs(output_dir)

#使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()

index = 1
for (path, dirnames, filenames) in os.walk(input_dir):
    for filename in filenames:
        if filename.endswith('.jpg'):
         print('Being processed picture %s' % index)
            img_path = path+'/'+filename
            # 从文件读取图片
            img = cv2.imread(img_path)
            # 转为灰度图片
            gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # 使用detector进行人脸检测 dets为返回的结果
            dets = detector(gray_img, 1)

            #使用enumerate 函数遍历序列中的元素以及它们的下标
            #下标i即为人脸序号
            #left:人脸左边距离图片左边界的距离 ;right:人脸右边距离图片左边界的距离 
            #top:人脸上边距离图片上边界的距离 ;bottom:人脸下边距离图片上边界的距离
            for i, d in enumerate(dets):
                x1 = d.top() if d.top() > 0 else 0
                y1 = d.bottom() if d.bottom() > 0 else 0
                x2 = d.left() if d.left() > 0 else 0
                y2 = d.right() if d.right() > 0 else 0
                # img[y:y+h,x:x+w]
                face = img[x1:y1,x2:y2]
                # 调整图片的尺寸
                face = cv2.resize(face, (size,size))
                cv2.imshow('image',face)
                # 保存图片
                cv2.imwrite(output_dir+'/'+str(index)+'.jpg', face)
                index += 1

            key = cv2.waitKey(30) & 0xff
            if key == 27:
                sys.exit(0)

这个项目用到的图片数是10000张左右,如果是自己下载的图片集,控制一下图片的数量避免数量不足,或图片过多带来的内存不够与运行缓慢。


训练模型


有了训练数据之后,通过cnn来训练数据,就可以让她记住我的人脸特征,学习怎么认识我了。


train_faces.py

import tensorflow as tf
import cv2
import numpy as np
import os
import random
import sys
from sklearn.model_selection import train_test_split

my_faces_path = './my_faces'
other_faces_path = './other_faces'
size = 64

imgs = []
labs = []

def getPaddingSize(img):
    h, w, _ = img.shape
    top, bottom, left, right = (0,0,0,0)
    longest = max(h, w)

    if w < longest:
        tmp = longest - w
        # //表示整除符号
        left = tmp // 2
        right = tmp - left
    elif h < longest:
        tmp = longest - h
        top = tmp // 2
        bottom = tmp - top
    else:
        pass
    return top, bottom, left, right

def readData(path , h=size, w=size):
    for filename in os.listdir(path):
        if filename.endswith('.jpg'):
            filename = path + '/' + filename

            img = cv2.imread(filename)

            top,bottom,left,right = getPaddingSize(img)
            # 将图片放大, 扩充图片边缘部分
            img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0,0,0])
            img = cv2.resize(img, (h, w))

            imgs.append(img)
            labs.append(path)

readData(my_faces_path)
readData(other_faces_path)
# 将图片数据与标签转换成数组
imgs = np.array(imgs)
labs = np.array([[0,1] if lab == my_faces_path else [1,0] for lab in labs])
# 随机划分测试集与训练集
train_x,test_x,train_y,test_y = train_test_split(imgs, labs, test_size=0.05, random_state=random.randint(0,100))
# 参数:图片数据的总数,图片的高、宽、通道
train_x = train_x.reshape(train_x.shape[0], size, size, 3)
test_x = test_x.reshape(test_x.shape[0], size, size, 3)
# 将数据转换成小于1的数
train_x = train_x.astype('float32')/255.0
test_x = test_x.astype('float32')/255.0

print('train size:%s, test size:%s' % (len(train_x), len(test_x)))
# 图片块,每次取100张图片
batch_size = 100
num_batch = len(train_x) // batch_size

x = tf.placeholder(tf.float32, [None, size, size, 3])
y_ = tf.placeholder(tf.float32, [None, 2])

keep_prob_5 = tf.placeholder(tf.float32)
keep_prob_75 = tf.placeholder(tf.float32)

def weightVariable(shape):
    init = tf.random_normal(shape, stddev=0.01)
    return tf.Variable(init)

def biasVariable(shape):
    init = tf.random_normal(shape)
    return tf.Variable(init)

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')

def maxPool(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

def dropout(x, keep):
    return tf.nn.dropout(x, keep)

def cnnLayer():
    # 第一层
    W1 = weightVariable([3,3,3,32]) # 卷积核大小(3,3), 输入通道(3), 输出通道(32)
    b1 = biasVariable([32])
    # 卷积
    conv1 = tf.nn.relu(conv2d(x, W1) + b1)
    # 池化
    pool1 = maxPool(conv1)
    # 减少过拟合,随机让某些权重不更新
    drop1 = dropout(pool1, keep_prob_5)

    # 第二层
    W2 = weightVariable([3,3,32,64])
    b2 = biasVariable([64])
    conv2 = tf.nn.relu(conv2d(drop1, W2) + b2)
    pool2 = maxPool(conv2)
    drop2 = dropout(pool2, keep_prob_5)

    # 第三层
    W3 = weightVariable([3,3,64,64])
    b3 = biasVariable([64])
    conv3 = tf.nn.relu(conv2d(drop2, W3) + b3)
    pool3 = maxPool(conv3)
    drop3 = dropout(pool3, keep_prob_5)

    # 全连接层
    Wf = weightVariable([8*16*32, 512])
    bf = biasVariable([512])
    drop3_flat = tf.reshape(drop3, [-1, 8*16*32])
    dense = tf.nn.relu(tf.matmul(drop3_flat, Wf) + bf)
    dropf = dropout(dense, keep_prob_75)

    # 输出层
    Wout = weightVariable([512,2])
    bout = weightVariable([2])
    #out = tf.matmul(dropf, Wout) + bout
    out = tf.add(tf.matmul(dropf, Wout), bout)
    return out

def cnnTrain():
    out = cnnLayer()

    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out, labels=y_))

    train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
    # 比较标签是否相等,再求的所有数的平均值,tf.cast(强制转换类型)
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(y_, 1)), tf.float32))
    # 将loss与accuracy保存以供tensorboard使用
    tf.summary.scalar('loss', cross_entropy)
    tf.summary.scalar('accuracy', accuracy)
    merged_summary_op = tf.summary.merge_all()
    # 数据保存器的初始化
    saver = tf.train.Saver()

    with tf.Session() as sess:

        sess.run(tf.global_variables_initializer())

        summary_writer = tf.summary.FileWriter('./tmp', graph=tf.get_default_graph())

        for n in range(10):
             # 每次取128(batch_size)张图片
            for i in range(num_batch):
                batch_x = train_x[i*batch_size : (i+1)*batch_size]
                batch_y = train_y[i*batch_size : (i+1)*batch_size]
                # 开始训练数据,同时训练三个变量,返回三个数据
                _,loss,summary = sess.run([train_step, cross_entropy, merged_summary_op],
                                           feed_dict={x:batch_x,y_:batch_y, keep_prob_5:0.5,keep_prob_75:0.75})
                summary_writer.add_summary(summary, n*num_batch+i)
                # 打印损失
                print(n*num_batch+i, loss)

                if (n*num_batch+i) % 100 == 0:
                    # 获取测试数据的准确率
                    acc = accuracy.eval({x:test_x, y_:test_y, keep_prob_5:1.0, keep_prob_75:1.0})
                    print(n*num_batch+i, acc)
                    # 准确率大于0.98时保存并退出
                    if acc > 0.98 and n > 2:
                        saver.save(sess, './train_faces.model', global_step=n*num_batch+i)
                        sys.exit(0)
        print('accuracy less 0.98, exited!')

cnnTrain()

训练之后的数据会保存在当前目录下。


使用模型进行识别


最后就是让她认识我了,很简单,只要运行程序,让摄像头拍到我的脸,她就可以轻松地识别出是不是我了。


is_my_face.py

output = cnnLayer()  
predict = tf.argmax(output, 1)  

saver = tf.train.Saver()  
sess = tf.Session()  
saver.restore(sess, tf.train.latest_checkpoint('.'))  

def is_my_face(image):  
    res = sess.run(predict, feed_dict={x: [image/255.0], keep_prob_5:1.0, keep_prob_75: 1.0})  
    if res[0] == 1:  
        return True  
    else:  
        return False  

#使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()

cam = cv2.VideoCapture(0)  

while True:  
    _, img = cam.read()  
    gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    dets = detector(gray_image, 1)
    if not len(dets):
        #print('Can`t get face.')
        cv2.imshow('img', img)
        key = cv2.waitKey(30) & 0xff  
        if key == 27:
            sys.exit(0)

    for i, d in enumerate(dets):
        x1 = d.top() if d.top() > 0 else 0
        y1 = d.bottom() if d.bottom() > 0 else 0
        x2 = d.left() if d.left() > 0 else 0
        y2 = d.right() if d.right() > 0 else 0
        face = img[x1:y1,x2:y2]
        # 调整图片的尺寸
        face = cv2.resize(face, (size,size))
        print('Is this my face? %s' % is_my_face(face))

        cv2.rectangle(img, (x2,x1),(y2,y1), (255,0,0),3)
        cv2.imshow('image',img)
        key = cv2.waitKey(30) & 0xff
        if key == 27:
            sys.exit(0)

sess.close()


 End 

阅读排行榜/精华推荐
1
入门学习

如果有人质疑大数据?不妨把这两个视频转给他 

视频:大数据到底是什么 都说干大数据挣钱 1分钟告诉你都在干什么

人人都需要知道 关于大数据最常见的10个问题

2
进阶修炼

从底层到应用,那些数据人的必备技能

如何高效地学好 R?

一个程序员怎样才算精通Python?

3
数据源爬取/收集

排名前50的开源Web爬虫用于数据挖掘

33款可用来抓数据的开源爬虫软件工具

在中国我们如何收集数据?全球数据收集大教程

4
干货教程

PPT:数据可视化,到底该用什么软件来展示数据?

干货|电信运营商数据价值跨行业运营的现状与思考

大数据分析的集中化之路 建设银行大数据应用实践PPT

【实战PPT】看工商银行如何利用大数据洞察客户心声?              

六步,让你用Excel做出强大漂亮的数据地图

 数据商业的崛起 解密中国大数据第一股——国双

双11剁手幕后的阿里“黑科技” OceanBase/金融云架构/ODPS/dataV

金融行业大数据用户画像实践


讲述大数据在金融、电信、工业、商业、电子商务、网络游戏、移动互联网等多个领域的应用,以中立、客观、专业、可信赖的态度,多层次、多维度地影响着最广泛的大数据人群

36大数据

长按识别二维码,关注36大数据


搜索「36大数据」或输入36dsj.com查看更多内容。

投稿/商务/合作:dashuju36@qq.com


点击下方“阅读原文”查看更多

↓↓↓

关注公众号:拾黑(shiheibook)了解更多

[广告]赞助链接:

四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/

公众号 关注网络尖刀微信公众号
随时掌握互联网精彩
赞助链接