课程 | 8小时搞定机器学习之概率与统计推断

百家 作者:AI100 2017-07-16 13:20:36


还记得我们的《XGBoost从基础到实战》吗?没错,我们的美女老师冒老师要开新课啦~~~专门为你排忧解难,解决各大数学问题——《机器学习之概率与统计推断》在等你哦!


概率与机器学习算法?

抢先体验冒老师的讲课风格,超?????好评

<iframe class="video_iframe" data-vidtype="2" allowfullscreen="" frameborder="0" data-ratio="1.7647058823529411" data-w="480" data-src="http://v.qq.com/iframe/player.html?vid=n13203z8fqx&width=370&height=208.125&auto=0" width="370" height="208.125" data-vh="208.125" data-vw="370" src="http://v.qq.com/iframe/player.html?vid=n13203z8fqx&width=370&height=208.125&auto=0" style="display: none; width: 370px !important; height: 208.125px !important;"></iframe>

没过瘾的同学请浏览

↓↓↓↓↓

冒老师主讲《XGBoost从基础到实战》心得


课程介绍

机器学习是一门集概率论、线性代数、数值计算、最优化理论和计算机科学等多个领域的交叉学科。本门课程——即《机器学习之概率与统计推断》讲解机器学习算法所需概率和统计推断知识。概率部分包括概率公理及推论、条件概率、贝叶斯公式、随机变量及其概率函数(CDF/pdf)、常用概率分布及其均值、方差;统计推断部分包括大数定律和中心极限定理、极大似然估计、贝叶斯估计,估计的评价、偏差-方差平衡。课程还会讲解假设检验的基本概念。


主题:《机器学习之概率与统计推断》

讲师:冒教授

开课时间:7月22日起,每周六、日上午10:00-12:00在线直播

报名:戳“阅读原文”或扫描下方课程二维码。

活动:转发朋友圈,即可获得50元优惠券,低至349元!


《机器学习之概率与统计推断》


讲师介绍

冒教授:计算机博士,现在中科院从事科研教学工作,十余年机器学习教学经验,主持国家级科研项目3项,研究方向为机器学习、计算机视觉及多媒体处理。


开课时间:7月22日起,每周六、日上午10:00-12:00  在线直播


课程特色

本课程由资深计算机博士讲解,讲解机器学习所需的概率与统计推断相关知识,避开冗长的数学证明,从计算的角度精炼讲解概率统计知识,让听众在短时间内完美补充对概率与统计知识。


课程大纲

第一课:随机变量及其分布

1. 概率公理及推论

2. 随机事件之间的关系:条件概率、贝叶斯公式

3. 随机变量及其分布: pmf/pdf、CDF、均值、方差、分位数

4. 常用随机变量分布:离散型随机变量、连续性随机变量

5. 概率密度估计

6. 应用:Kaggle竞赛数据分析(直方图/核密度估计)、xgboost近似搜索(分位数)


第二课:多元随机向量及其分布

1. 联合概率、边缘概率、条件概率、条件独立

2. 常用多元分布

3. 朴素贝叶斯

4. 应用:MRF、CRF、RBM


第三课:极大似然估计

1. 极大似然估计:似然函数、极大似然估计

2. 估计评价:偏差-方差分解、Bootstrap

3. 应用:线性回归参数估计、logistic回归参数估计


第四课:贝叶斯估计

1. 贝叶斯估计:先验/共轭先验、似然、后验、最大后验估计

2. 正则

3. 应用:岭回归、Lasso


面向人群

1. 零基础,想入门机器学习;

2. 想深入研究机器学习;

3. 想补充数学基础知识的相关从业人员;

4. 对机器学习(尤其是竞赛)感兴趣的在校学生或从业人员。


咨询&报名

概率与统计推断还不过瘾?数学基础都需要补?我们还有《机器学习之矩阵》、《机器学习之凸优化》哦!


扫课程二维码直接参团报名《机器学习之数学基础》(包括三门课)系列课程~

课程页戳链接可单独报名每一门课程哦!



加课程小助手回复“722”进群咨询

付款后加小助手进课程群



关注公众号:拾黑(shiheibook)了解更多

[广告]赞助链接:

四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/

公众号 关注网络尖刀微信公众号
随时掌握互联网精彩
赞助链接