Python 中处理缺失值的 2 种方法
作者 | 朱小五
来源 | 快学Python
查找到了缺失值,下一步便是对这些缺失值进行处理,今天同样会分享多个方法!
删除-dropna
dropna()
方法的参数如下所示。df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
参数说明:
axis:选择删除行还是列,
axis=0
(默认)表示操作行,axis=1
表示操作列。how:与参数axis配合使用,可选的值为any(默认)或者all。
thresh:axis中至少有N个非缺失值,否则删除。
subset:参数类型为列表,表示删除时只考虑的索引或列名。
inplace:是否在原数据上操作。
在交互式环境中输入如下命令:
df.dropna(axis=0)
df.dropna(axis=0,how='all')
df.dropna(axis=0, how="any", thresh=3)
df.dropna(axis=0, how="any", subset=["C列", "D列"])
填充-fillna
dropna()
方法直接粗暴地删除缺失值,还可以使用fillna()
填充缺失值。其参数如下所示。df.fillna(value=None, method=None, axis=None, inplace=False, limit=None)
value:表示填充的值,可以是一个指定值,也可以是字典。 method: 填充的方式,默认为None。 axis:与method参数搭配使用,axis=0表示按行,axis=1表示按列。 inplace:是否在原数据上操作。 limit:表示填充执行的次数。如果是按行填充,则填充一行表示执行一次,按列同理。
df.fillna(value=0)
axis=1
。df.fillna(axis=0, method="ffill")
df.fillna(axis=0, method="ffill", limit=1)
此外,还有一些不太常用的方法。比如除了通过fillna方法来填充缺失值外,还可以通过 interpolate
方法来填充。默认情况下使用线性差值,可以设置method参数来改变方式。也可以通过字符串的 replace()
方法来替换缺失值。本来这部分想作为第三种方法介绍,写完发现有点“听君一席话,好似庄周带净化”,干脆作为小贴士吧。
CSDN音视频技术开发者在线调研正式上线!
现邀开发者们扫码在线调研
分享
点收藏
点点赞
点在看
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/
关注网络尖刀微信公众号
随时掌握互联网精彩
随时掌握互联网精彩
赞助链接
排名
热点
搜索指数
- 1 接续奋斗 共谱新篇 7928926
- 2 放炮炸翻多辆豪车的熊孩子已被带走 7945242
- 3 敖丙他爸出场 哇声一片 7892043
- 4 申遗后的首个春节这样过 7773966
- 5 李宇春第一时间取消连续包月 7666560
- 6 大年初三宜好好休息 7597526
- 7 金价大涨创历史新高 7437128
- 8 李子柒新春同款AI头像来了 7349120
- 9 2025春节档首部10亿电影诞生 7217102
- 10 “俄罗斯舅妈”来中国也得会发红包 7191490