今日开源:阿里达摩院最新框架FederatedScope来了!让联邦学习从可用到好用
机器之心发布
机器之心编辑部
刚刚,阿里巴巴达摩院发布新型联邦学习框架 FederatedScope,该框架支持大规模、高效率的联邦学习异步训练,能兼容不同设备运行环境,且提供丰富功能模块,大幅降低了隐私保护计算技术开发与部署难度。该框架现已面向全球开发者开源。
目前开源的联邦学习框架包括TensorFlow Federated(TFF)、FATE等。这些框架提供了联邦学习相关基础组件及实现方式,如联邦聚合、差分隐私、同态加密等,为联邦学习相关社区研究和工业应用都提供了一定支持。
(1)自动调参能大幅降低搜索最优超参的时间和资源消耗。FederatedScope 提供了最新的联邦学习自动调参算法方便开发者直接使用。同时,自动调参模块也抽象了自动调参算法框架,从而方便研究人员开发新的调参算法。
(2)隐私保护是所有场景的通用需求,FederatedScope 的隐私保护模块提供了主流的隐私保护机制,包括多方安全计算、同态加密和差分隐私。除此以外,隐私保护模块额外提供了主流的隐私评估算法,方便开发者验证隐私保护的强度。
(3)性能监控能够帮助开发者随时了解训练进展,及时发现训练异常。FederatedScope 的性能模块能以友好的界面展示训练过程的多种中间信息,包括每一个用户端的训练结果和聚合端的评价等。
(4)由于联邦学习参与方的数据分布和设备性能可能存在较大的差异性,端模型个性化是应用场景中的强需求。FederatedScope 的端模型个性化模块实现了差异化训练配置、定制训练模块、个性化参与方的训练行为、维护全局和个性化的本地模型等功能,从而达成端云协同。同时端模型个性化模块提供了丰富的个性化算法方便开发者调用。
(1)对于初次接触联邦学习的使用者来说,FederatedScope 提供了详尽的教程、文档和运行脚本,能够引导用户快速入门上手联邦学习。FederatedScope 也包含了常用的模型架构实现,对一些基准数据集也做了统一的预处理和封装,以帮助用户便捷地开展实验。
(2)对于希望将经典联邦学习应用在不同下游任务的开发者,如使用不同的数据和模型架构,FederatedScope 允许通过注册的方式使用准备好的新数据集和模型架构,而不需要修改其他的细节。另外,FederatedScope 也支持根据任务类型定制不同的性能监控和评价指标。
(3)对于希望深入研究和开发联邦学习算法的用户,需要足够的自由度在联邦学习中添加异质信息交换和多样的处理行为,在FederatedScope中只需定义消息的类型和相应的处理函数。相比现有的联邦学习框架,FederatedScope的优点在于不需要开发者将联邦学习的过程用顺序执行的视角来完整描述,而只需采用事件驱动的方式增加新的消息类型和消息处理行为,系统协助完成自动调参和高效异步训练,降低了所需的开发量以及复杂度。
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:content@jiqizhixin.com
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/
随时掌握互联网精彩
- 1 准确把握守正创新的辩证关系 7954756
- 2 中国黄金原董事长家搜出大量黄金 7985341
- 3 空调英文不会男生盯着考场空调看 7872223
- 4 消费品以旧换新“加速度” 7732919
- 5 被铁路售票员的手速惊到了 7639830
- 6 网红赤木刚宪爆改赵露思 7502486
- 7 县委原书记大搞“刷白墙”被通报 7450054
- 8 山姆代购在厕所分装蛋糕 7378085
- 9 马龙刘诗雯穿正装打混双 7272517
- 10 刘强东提前发年终奖 7118000