arXiv上2021年12月21日上传的自动驾驶可解释AI的综述:"Explainable Artificial Intelligence for Autonomous Driving: A Comprehensive Overview and Field Guide for Future Research Directions",作者来自加拿大Alberta大学和华为研发。在过去十年中,自动驾驶在研发方面取得了重大的里程碑。人们有兴趣在道路上部署自行操作车辆,这预示着交通系统将更加安全和生态友好。随着计算能力强大的人工智能(AI)技术的兴起,自动驾驶车辆可以高精度地感知环境,做出安全的实时决策,在没有人为干预的情况下运行更加可靠。然而,在目前的技术水平下,自动驾驶汽车中的智能决策通常不为人类所理解,这种缺陷阻碍了这项技术被社会接受。因此,除了做出安全的实时决策外,自动驾驶汽车的AI系统还需要解释这些决策是如何构建的,以便在多个政府管辖区内符合监管要求。该研究为开发自动驾驶车辆的可解释人工智能(XAI)方法提供了全面的信息。首先,全面概述了目前最先进的自动驾驶汽车行业在可解释方面存在的差距。然后,展示该领域中可解释和可解释受众的分类。第三,提出了一个端到端自动驾驶系统体系结构的框架,并论证了XAI在调试和调控此类系统中的作用。最后,作为未来的研究方向,提供自主驾驶XAI方法的实地指南,提高操作安全性和透明度,公开获得监管机构、制造商和所有密切参与者的批准。自动驾驶可解释的需求源自各种问题和关注点。首先,自动驾驶车辆参与发生的道路事故,是一个基本的实际问题。由于粗心和危险驾驶会直接影响乘客和旁观者的安全,人们通常需要确认安全运输系统。此外,对行为或决策来由的理解是人类思维的自然要求。有专家说,“如果用户不信任模型或预测,他们将不会使用它。”在案例研究中,经验证明提供可解释和可察觉的系统可以显著提高用户对系统的信任。特别是,如果没有向参与者提供可靠的解释,频繁发生的故障可能会严重损害个人和公众对智能系统的信任。一旦对智能系统的信任被破坏,重新获得信任可能会是一项艰巨的任务。因此,人类自然希望了解特定场景中汽车的关键决策,以建立对汽车的信任。如果汽车智能决策的背后有信任,那么将进一步支持另一个积极的组件,透明度。一旦提供了透明度,就达到了另一项要求,即可依赖(accountability ),这与该系统的决定和行动是否符合管辖条例和标准有关。最后,这些积极因素促成公平性,对自主系统的决定性行动进行道德分析、支持和因果论证。这些组件及其相互关系可被视为实现自动驾驶车辆获得大众认可的基本因素。 根据自动驾驶中用户的身份和背景知识,可解释的细节、类型和表达方式各不相同。例如,一个对自动驾驶车辆如何运行缺乏专业知识的用户,可能会对相关决策/结果的简单解释感到满意。然而,自主系统工程师需要更多信息的解释,了解汽车当前的可操作性,并根据需要适当地“调试”现有系统。因此,解释受众的领域知识和知识特点对于提供恰当的、有充分信息的和可理解的解释至关重要。以下就是一些可解释性的影响因素:
cause filters
content type
model
system type
interactivity
concrete scope
下面是自动驾驶各个模块的可解释性方法:
01
感知正如准确感知环境是自主驾驶的基本要求一样,提供自主行动决策的基本解释对于理解场景导航和驾驶行为也至关重要,特别是在关键场景中。因此,在自动驾驶车辆的感知任务中需要提供可解释性方法。一些研究用视觉注意的反省(introspective )文本描述寻求因果(post-hoc)解释,一些研究把解释作为涉及因果推理的人类行为描述,另一些研究将重点放在目标诱导(object-induced)的行为决策。另一种基于感知的解释生成方法是理解卷积神经网络(CNN)的结果。这种方法背后的主要思想是测量和显示从神经网络输出层反向传播(BP)到输入层的梯度。基于梯度的解释方法示例包括Class Activation Map(CAM),其增强变型,如 Guided Grad-CAM、Grad-CAM、Grad-CAM++、Smooth Grad CAM++,以及基于反向传播的方法,如引导(guided)反向传播、分层相关(layered relevance )传播,VisualBackProp和DeepLift。此外,基于启发式的Deep Visual Explanations(DVE)为深度CNN的预测提供了合理的理由。基于计算机视觉的可解释自动驾驶系统综述,见valeo公司的文章“Explainability of vision-based autonomous driving systems: Review and challenges”。