详解 16 个 Pandas 函数,让你的 “数据清洗” 能力提高 100 倍!
【CSDN 编者按】pandas对字符串的处理进行了加强,处理的单位变成了字符串的数组,更加高效,而对于缺失值,pandas中的矢量化字符串函数还能够自动跳过。
本文介绍
1个数据集,16个Pandas函数
import pandas as pd
df ={'姓名':[' 黄同学','黄至尊','黄老邪 ','陈大美','孙尚香'],
'英文名':['Huang tong_xue','huang zhi_zun','Huang Lao_xie','Chen Da_mei','sun shang_xiang'],
'性别':['男','women','men','女','男'],
'身份证':['463895200003128433','429475199912122345','420934199110102311','431085200005230122','420953199509082345'],
'身高':['mid:175_good','low:165_bad','low:159_bad','high:180_verygood','low:172_bad'],
'家庭住址':['湖北广水','河南信阳','广西桂林','湖北孝感','广东广州'],
'电话号码':['13434813546','19748672895','16728613064','14561586431','19384683910'],
'收入':['1.1万','8.5千','0.9万','6.5千','2.0万']}
df = pd.DataFrame(df)
df
① cat函数:用于字符串的拼接
df["姓名"].str.cat(df["家庭住址"],sep='-'*3)
② contains:判断某个字符串是否包含给定字符
df["家庭住址"].str.contains("广")
③ startswith/endswith:判断某个字符串是否以…开头/结尾
# 第一个行的“ 黄伟”是以空格开头的
df["姓名"].str.startswith("黄")
df["英文名"].str.endswith("e")
④ count:计算给定字符在字符串中出现的次数
df["电话号码"].str.count("3")
⑤ get:获取指定位置的字符串
df["姓名"].str.get(-1)
df["身高"].str.split(":")
df["身高"].str.split(":").str.get(0)
⑥ len:计算字符串长度
df["性别"].str.len()
⑦ upper/lower:英文大小写转换
df["英文名"].str.upper()
df["英文名"].str.lower()
⑧ pad+side参数/center:在字符串的左边、右边或左右两边添加给定字符
df["家庭住址"].str.pad(10,fillchar="*") # 相当于ljust()
df["家庭住址"].str.pad(10,side="right",fillchar="*") # 相当于rjust()
df["家庭住址"].str.center(10,fillchar="*")
⑨ repeat:重复字符串几次
df["性别"].str.repeat(3)
⑩ slice_replace:使用给定的字符串,替换指定的位置的字符
df["电话号码"].str.slice_replace(4,8,"*"*4)
⑪ replace:将指定位置的字符,替换为给定的字符串
df["身高"].str.replace(":","-")
⑫ replace:将指定位置的字符,替换为给定的字符串(接受正则表达式)
replace中传入正则表达式,才叫好用; 先不要管下面这个案例有没有用,你只需要知道,使用正则做数据清洗多好用;
df["收入"].str.replace("\d+\.\d+","正则")
⑬ split方法+expand参数:搭配join方法功能很强大
# 普通用法
df["身高"].str.split(":")
# split方法,搭配expand参数
df[["身高描述","final身高"]] = df["身高"].str.split(":",expand=True)
df
# split方法搭配join方法
df["身高"].str.split(":").str.join("?"*5)
⑭ strip/rstrip/lstrip:去除空白符、换行符
df["姓名"].str.len()
df["姓名"] = df["姓名"].str.strip()
df["姓名"].str.len()
⑮ findall:利用正则表达式,去字符串中匹配,返回查找结果的列表
findall使用正则表达式,做数据清洗,真的很香!
df["身高"]
df["身高"].str.findall("[a-zA-Z]+")
⑯ extract/extractall:接受正则表达式,抽取匹配的字符串(一定要加上括号)
df["身高"].str.extract("([a-zA-Z]+)")
# extractall提取得到复合索引
df["身高"].str.extractall("([a-zA-Z]+)")
# extract搭配expand参数
df["身高"].str.extract("([a-zA-Z]+).*?([a-zA-Z]+)",expand=True)
☞不爱跳槽、月薪集中在 8K-17k、五成欲晋升为技术Leader|揭晓中国开发者真实现状
☞小米成中国第一大手机厂商;中芯国际全线涨价;街电和搜电宣布合并 | 极客头条
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/
关注网络尖刀微信公众号
随时掌握互联网精彩
随时掌握互联网精彩
赞助链接
排名
热点
搜索指数
- 1 澳门是伟大祖国的一方宝地 7930492
- 2 央视曝光未成年人绕开防沉迷只需4元 7966647
- 3 特朗普赞成TikTok继续在美国运营 7896096
- 4 2024 向上的中国 7786066
- 5 张雨绮 为了讨大家喜欢才穿成这样 7658840
- 6 星巴克大罢工 7597223
- 7 停个车数据就泄露了 7461104
- 8 大S老公具俊晔站C位跳女团舞 7353568
- 9 男子暴瘦110斤后被质疑戴人皮面具 7289192
- 10 老人花2万买保健床垫后再不愿去医院 7167500