【限时】推荐算法工程师培养计划
允中 发自 凹非寺
量子位 编辑 | 公众号 QbitAI
由于近些年深度学习技术的飞速发展,大力加速推动了AI在互联网以及传统各个行业的商业化落地,其中,推荐系统、计算广告等领域彰显的尤为明显。由于推荐系统与提升用户量以及商业化变现有着密不可分的联系,各大公司都放出了众多推荐系统相关职位,且薪水不菲,目前发展势头很猛。
但是,这里存在几个问题,很多欲从事推荐系统的同学大多数学习的方式是自学:
往往是学了很多的推荐算法模型,了解些推荐里常用的算法,如:协同过滤、FM、deepFM等,但是却不清楚这些模型在工业界推荐系统中是如何串联、如何配合、有哪些坑,哪些trick的,导致无论面试还是真正去业界做推荐系统,都会被推荐领域的”老枪老炮“们一眼识别出小白属性。
对于算法原理理解不深刻,这就会导致实际应用时不能很好地将模型的性能发挥出来,另外面试时对于大厂面试官的刨根问底,只能是眼睁睁的丢掉offer。
CF、FM、DSSM、DeepFM等这些推荐业界明星模型,你真的清楚他们的内部运行原理以及使用场景吗?真的了解FM模型与SVM有什么相似之处吗?FM固然可以用作为打分模型,但它可以用来做matching吗,如果可以,如何做?item2Vec模型在业界是如何缓解冷启动的问题的?双塔模型优势在哪?深度模型到底是如何做matching的,是离线计算好结果还是实时的对网络进行前向计算?DeepFM具体实现时,wide端和deep端的优化方式是一样的吗?基于Graph的推荐方法在业界的应用目前是怎样的?基于上述的目的,贪心学院推出了《推荐系统工程师培养计划2期》,由一线的推荐系统负责人亲自全程直播讲解。
《推荐算法工程师培养计划》
专注于培养行业TOP10%的推荐算法工程师 关注公众号:拾黑(shiheibook)了解更多 [广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
对课程有意向的同学
添加课程顾问小姐姐微信
报名、课程咨询
让资讯触达的更精准有趣:https://www.0xu.cn/
随时掌握互联网精彩
- 1 习近平引领构建网络空间命运共同体 7967240
- 2 王楚钦拿下比赛怒吼 7936200
- 3 俄飞行员驾驶苏-57经停太原买买买 7895744
- 4 聆听大国外交的铿锵足音 7753342
- 5 两位抗癌网红先后去世 近期曾通话 7672259
- 6 张本智和赢球后摇头庆祝 7596052
- 7 熏鸡事变大结局 7414384
- 8 大范围降雪降温马上来了 7346064
- 9 男子打赏女主播400万自己啃馒头 7260812
- 10 9条具体措施稳外贸 7194165