我国第一颗综合性太阳探测卫星——先进天基太阳天文台(ASO-S)计划于2022年上半年发射升空。这颗卫星的发射,将标志我国进入“探日”时代。转载一篇精彩的科普文章,详细讲述了太阳的奥秘,以及ASO-S的科学目标。文章来源于中国科学院紫金山天文台,作者ASO-S。以下是原文:
太阳,是与我们关系最密切的一颗恒星,也是唯一一颗可以详细研究的恒星。它为我们带来了光明和温暖,但同时也会对地球产生重大影响。我国第一颗综合性太阳探测卫星——先进天基太阳天文台(ASO-S)将于2022年发射升空,揭示太阳磁场、太阳耀斑和日冕物质抛射(一磁两暴)的形成及相互关系。
大约46亿年前,在距离银河系中心约2.6万光年之处的螺旋臂上,一团分子云开始在自身的引力作用下坍缩,并逐渐形成了我们今天所熟悉的太阳。从古至今,太阳引发了人类太多的思考,我们对这颗耀眼的恒星充满了好奇:它为什么会发光?它是永恒存在的吗?它的结构是什么?它有哪些显著特征?它会对地球造成哪些影响?为了回答这些问题,科学家不仅发展出了相应的理论基础,还建造或发射了各种探测器,层层揭开太阳的神秘面纱。
太阳主要由氢组成,它之所以能够在几十亿年中一直稳定地发光发热,是因为其内部一直在持续进行氢聚变成氦的热核反应。我们可以把这太阳内部的聚变反应想象成不断的有氢弹在持续爆炸。每一秒,太阳核心就有6亿氢元素聚变成氦元素,将近400万吨的物质转化成能量。更具体地说,在太阳的内部,质子会通过一系列的反应聚变成氦-4原子核,从而释放出能量。这是一个被称为质子-质子链(pp链)的聚变过程,在这个过程中,也会释放出正电子(电子的反粒子)、伽马射线和中微子。理论表明,太阳的99%的能量都是通过pp链的一系列聚变反应释放的。2018年,位于意大利中部的亚平宁山脉地下深处的Borexino实验通过测量来自太阳的中微子,确认了pp链是太阳的主要能量来源。太阳内部另一个重要的聚变反应过程被称为碳氮氧循环(CNO循环),产生的核能约为1%。2020年11月,同样是Borexino实验,通过测量中微子,首次确认了CNO循环的存在。 pp链与CNO循环是太阳的主要聚变过程。
万物皆有其生命周期,太阳也不例外。只是相比于太阳的演化史,人类历史不过沧海一粟,所以每天东升西落的太阳才会被误以为是亘古不变的。根据太阳中现有的氢氦含量对比,科学家计算出太阳还将继续“燃烧”约50亿年。届时,太阳的外层将膨胀得非常大,变成一颗巨大的红巨星。那些靠近它的行星,如水星、金星,甚至是地球都将被这个“红色大胖子”吞没。太阳的生命在“夕阳红”阶段还能持续数百万年,然而一旦太阳聚变了它所可能聚变的最重元素,它的外层大气最终会爆炸飞散,形成壮丽的行星状星云,其核心则会转变成一个致密天体——白矮星。白矮星是银河系中绝大多数类太阳恒星的宿命。然而,我们不必为此过分担心,因为这将发生在遥远的数十亿年后。现在我们把目光集中到正当壮年的太阳上。与地球相比,太阳非常之大,其半径约为70万千米,是地球半径的109倍。根据不同物理特性,天文学家将太阳的结构分为好几个层次:热核聚变反应发生在太阳的核心,那里的温度、压力和密度都极高。热核聚变产生的能量以光子形式存在,光子首先会通过辐射层,再在对流层以强对流形式将能量传递到外层大气。在太阳中心产生的光子想要逃离太阳实际上是非常艰难的,需要耗时数万年。而太阳中微子却可以在约8分钟的时间就完成逃离并抵达地球,这是因为它们几乎不与物质相互作用,且能以接近光的速度传播。这也是为什么Borexino实验会通过探测中微子来探索太阳的核心。从太阳的结构看,也许你会认为随着距离核心越来越远,温度也会逐渐下降,正如太阳表面的温度远远低于核心的一样。但出乎意料的是,太阳高层大气的温度分布与内层大气正好相反,越往外温度越高,从色球层底部(~4000度)逐渐增加。色球高层温度可以达到几万度,但更更令人惊讶的是,最外层的日冕温度竟高达百万度!这种反常的温度分布被称为“日冕高温之谜”,至今仍是太阳物理学中最大的谜题之一。仔细观察太阳(在任何时候都不要直接用眼睛去看太阳,即使是日食期间),就会发现太阳具有丰富的现象,其中一些特别显著的特征: 图片素材:日冕物质抛射-ESA&NASA/SOHO、太阳耀斑-SDO、太阳黑子-NSO/AURA/NSF无论是黑子、太阳耀斑亦或日冕物质抛射,它们的根源都是太阳磁场。变化的太阳磁场不仅可以在光球层产生黑子,还能触发耀斑和日冕物质抛射。太阳磁场、耀斑和日冕物质抛射三者简称为“一磁两暴”。 尽管太阳距离地球平均达1.5亿公里,但一旦太阳“发威”,耀斑和日冕物质抛射产生的磁云会裹挟着大量带电高能粒子,直奔地球而来,对地球环境,尤其是与现代生活息息相关的电磁环境造成严重破坏。2003年万圣节期间,太阳不甘寂寞充当了一次“捣蛋鬼”的角色,结结实实给地球捣了一次乱,使欧美的GOES、ACE、SOHO和WIND等一系列科学卫星都遭受了不同程度损害,导致全球卫星通讯受到干扰,GPS全球定位系统受到影响,定位精度出现了偏差,致使地面和空间一些需要即时通讯和定位的交通系统遭到不同程度的瘫痪。这次太阳事件也被称为“万圣节风暴”。鉴于这些情况,持续地对太阳活动进行监测是非常有必要的。据计算,一旦发生太阳耀斑、日冕物质抛射等爆发活动,科学家可以至少提前40个小时得到信息,从而及时做出相关的防护举措,以避免对人类生存环境造成破坏。 太阳会释放出不同波长的光,但地球的大气并非对所有的波段都是透明的,在地面上只能观测到可见光和红外光,以及有限的紫外光和射电辐射,它们在宽广的太阳辐射波谱中只占很小的一部分。所以,只有将探测器发射到太空中去,避开地球大气的影响,从各个波段研究太阳,才能够描绘出一幅完整的图像。 通过地面和太空中不同波段的望远镜,可以研究太阳的不同细节。| 图片素材:The University of Chicago自上世纪60年代以来,世界各国已经先后发射了70多颗太阳探测相关卫星进入太空。2018年,备受瞩目的帕克太阳探测器发射升空,它以前所未有的近距离对太阳进行观测,并已经获取一定的成果。在这场太阳的探索之旅中,我国在太阳探测卫星方面一直缺席,直到ASO-S的出现! 探索太阳的一系列任务,发光处为研制中的ASO-S卫星。| 图片素材:NASA/Goddard
ASO-S卫星的主要科学目标正是一磁两暴,即观测和研究太阳磁场、太阳耀斑和日冕抛射三者之间的关系。 ASO-S卫星的科学目标。| 图片素材:NASA/SDO/AIA/LMSALASO-S卫星由三台有效载荷组成,用于测量太阳磁场,以及观测日冕物质抛射和太阳耀斑:ASO-S是中国科学院战略性先导专项“空间科学(二期)”启动的四项卫星工程之一。这也是我国第一颗综合性太阳探测卫星,计划于2022年赶在下一个太阳活动峰年前夕发射,预期在轨运行不少于4年。
ASO-S成功发射后,将详细记录第25个太阳活动周的“太阳风暴”。届时,围绕ASO-S观测结果的研究将成为国际热点,科学家在研究“一磁两暴”自然规律的同时,也会及时预报太阳爆发对人类的影响,以造福全人类。 https://www.nao.ac.jp/en/news/science/2020/20201126-mizusawa.html
https://www.nature.com/articles/d41586-018-07099-1
https://www.nature.com/articles/d41586-020-03238-9
https://link.springer.com/article/10.1007/s11207-020-01736-7
https://mp.weixin.qq.com/s/5MqdJu-ItucGKnN8T3ziyg
NASA’s Goddard Space Flight Center
编辑:王科超、高娜
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/