图像风格迁移也有框架了:使用Python编写,与PyTorch完美兼容,外行也能用
选自Medium
机器之心编译
编辑:陈萍
易于使用的神经风格迁移框架 pystiche。


论文地址:https://joss.theoj.org/papers/10.21105/joss.02761
项目地址:https://github.com/pmeier/pystiche
import torchimport pystichefrom pystiche import demo, enc, loss, ops, optimprint(f"pystiche=={pystiche.__version__}")device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pystiche==0.7.0multi_layer_encoder = enc.vgg19_multi_layer_encoder()print(multi_layer_encoder)
VGGMultiLayerEncoder(arch=vgg19, framework=torch, allow_inplace=True(preprocessing): TorchPreprocessing((0): Normalize(mean=('0.485', '0.456', '0.406'),std=('0.229', '0.224', '0.225')))(conv1_1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu1_1): ReLU(inplace=True)(conv1_2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu1_2): ReLU(inplace=True)(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2_1): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu2_1): ReLU(inplace=True)(conv2_2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu2_2): ReLU(inplace=True)(pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv3_1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu3_1): ReLU(inplace=True)(conv3_2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu3_2): ReLU(inplace=True)(conv3_3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu3_3): ReLU(inplace=True)(conv3_4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu3_4): ReLU(inplace=True)(pool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv4_1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu4_1): ReLU(inplace=True)(conv4_2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu4_2): ReLU(inplace=True)(conv4_3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu4_3): ReLU(inplace=True)(conv4_4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu4_4): ReLU(inplace=True)(pool4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv5_1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu5_1): ReLU(inplace=True)(conv5_2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu5_2): ReLU(inplace=True)(conv5_3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu5_3): ReLU(inplace=True)(conv5_4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu5_4): ReLU(inplace=True)(pool5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
content_layer = "relu4_2"encoder = multi_layer_encoder.extract_encoder(content_layer)content_loss = ops.FeatureReconstructionOperator(encoder)
style_layers = ("relu1_1", "relu2_1", "relu3_1", "relu4_1", "relu5_1")style_weight = 1e3def get_encoding_op(encoder, layer_weight):return ops.GramOperator(encoder, score_weight=layer_weight)style_loss = ops.MultiLayerEncodingOperator(multi_layer_encoder, style_layers, get_encoding_op, score_weight=style_weight,)
criterion = loss.PerceptualLoss(content_loss, style_loss).to(device)print(criterion)
PerceptualLoss((content_loss): FeatureReconstructionOperator(score_weight=1,encoder=VGGMultiLayerEncoder(layer=relu4_2,arch=vgg19,framework=torch,allow_inplace=True))(style_loss): MultiLayerEncodingOperator(encoder=VGGMultiLayerEncoder(arch=vgg19,framework=torch,allow_inplace=True),score_weight=1000(relu1_1): GramOperator(score_weight=0.2)(relu2_1): GramOperator(score_weight=0.2)(relu3_1): GramOperator(score_weight=0.2)(relu4_1): GramOperator(score_weight=0.2)(relu5_1): GramOperator(score_weight=0.2)))
size = 500images = demo.images()
content_image = images["bird1"].read(size=size, device=device)criterion.set_content_image(content_image)

style_image = images["paint"].read(size=size, device=device)criterion.set_style_image(style_image)

input_image = content_image.clone()output_image?=?optim.image_optimization(input_image,?criterion,?num_steps=500)

语义理解技术简介 基于预训练的语义理解技术
文心(ERNIE)技术原理详解
文心最新技术解读?
文心语义理解技术应用

??THE END?
转载请联系本公众号获得授权
投稿或寻求报道:content@jiqizhixin.com
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/







机器之心
关注网络尖刀微信公众号
