推荐系统算法工程师培养计划:博导级教研团队,原理教学、项目实践、大厂内推的一站式培训
允中 发自 凹非寺
量子位 编辑 | 公众号 QbitAI
由于近些年深度学习技术的飞速发展,大力加速推动了AI在互联网以及传统各个行业的商业化落地,其中,推荐系统、计算广告等领域彰显的尤为明显。由于推荐系统与提升用户量以及商业化变现有着密不可分的联系,各大公司都放出了众多推荐系统相关职位,且薪水不菲,目前发展势头很猛。
但是,很多欲从事推荐系统的同学大多数学习的方式是自学,在学习过程中会出现以下问题:
往往是学了很多的推荐算法模型,了解些推荐里常用的算法,如:协同过滤、FM、deepFM等,但是却不清楚这些模型在工业界推荐系统中是如何串联、如何配合、有哪些坑、哪些trick的,导致无论面试还是真正去业界做推荐系统,都会被推荐领域的”老枪老炮“们一眼识别出小白属性。
对于算法原理理解不深刻,这就会导致实际应用时不能很好地将模型的性能发挥出来,另外面试时对于大厂面试官的刨根问底,只能是眼睁睁的丢掉offer。
CF、FM、DSSM、DeepFM等这些推荐业界明星模型,你真的清楚他们的内部运行原理以及使用场景吗,逻辑回归为什么用sigmoid函数?有确切的理论推导吗?FM模型与SVM有什么相似之处吗?
FM固然可以用作为打分模型,但它可以用来做matching吗,如果可以,如何做?
item2Vec模型在业界是如何缓解冷启动的问题的?双塔模型优势在哪?深度模型到底是如何做matching的,是离线计算好结果还是实时的对网络进行前向计算?
DeepFM具体实现时,wide端和deep端的优化方式是一样的吗?基于Graph的推荐方法在业界的应用目前是怎样的?
基于上述的目的,贪心学院一直坚持跑在技术的最前线,帮助大家不断地成长。
为什么选择贪心学院的推荐系统训练营?
首先,全网不可能找得到另外一门系统性的训练营具备如此的深度和广度,所以从内容的角度来讲是非常稀缺的内容。
其次,即便网络上的资源非常多,学习是需要成本的,而且越有深度的内容越难找到好的学习资源。如果一门课程帮助你清晰地梳理知识体系,而且把有深度的知识点脉络讲清楚,这就是节省最大的成本。
另外,作为一家专注在AI领域的教育科技公司,教研团队的实力在同行业可以算是非常顶尖的,这里不乏顶会的最佳论文作者、美国微软总部推荐系统负责人等大咖。
《推荐算法工程师培养计划》,专注于培养行业TOP10%的推荐算法工程师
对课程有意向的同学,添加课程顾问小姐姐微信
报名、课程咨询
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/

随时掌握互联网精彩
- 1 为什么中国意味着确定性未来性 7904850
- 2 伊朗一港口发生高强度爆炸 7807845
- 3 多地宣布发钱奖励结婚 7713917
- 4 加关税降逆差为啥走不通 7618845
- 5 俄方称已收复库尔斯克 7523156
- 6 48岁女子怀孕7个月 28岁女儿发声 7428994
- 7 谢霆锋转发王菲看他演唱会的博文 7333743
- 8 中将被杀 俄罗斯立马行动 7231469
- 9 这10个省份生娃贡献近六成 7137657
- 10 杨迪回应疑似在南京当小时工 7040090