作词家下岗系列:教你用 AI 做一个写歌词的软件!
x(t)x(t)代表在序列索引号tt时训练样本的输入。同样的,x(t−1)x(t−1)和x(t+1)x(t+1)代表在序列索引号t−1t−1和t+1t+1时训练样本的输入。
h(t)h(t)代表在序列索引号tt时模型的隐藏状态。h(t)h(t)由x(t)x(t)和h(t−1)h(t−1)共同决定。
o(t)o(t)代表在序列索引号tt时模型的输出。o(t)o(t)只由模型当前的隐藏状态h(t)h(t)决定。
L(t)L(t)代表在序列索引号tt时模型的损失函数。
y(t)y(t)代表在序列索引号tt时训练样本序列的真实输出。
U,W,VU,W,V这三个矩阵是我们的模型的线性关系参数,它在整个RNN网络中是共享的,这点和DNN很不相同。也正因为是共享了,它体现了RNN的模型的“循环反馈”的思想。
实验前的准备
RNN算法搭建
1、数据集处理和准备:
2、模型的训练:
首先要读取数据集
设定训练批次、步数等等
数据载入RNN进行训练即可
def train():
filename = 'date.txt'
with open(filename, 'r', encoding='utf-8') as f:
text = f.read()
reader = TxtReader(text=text, maxVocab=3500)
reader.save('voc.data')
array = reader.text2array(text)
generator = GetBatch(array, n_seqs=100, n_steps=100)
model = CharRNN(
numClasses = reader.vocabLen,
mode ='train',
numSeqs = 100,
numSteps = 100,
lstmSize = 128,
numLayers = 2,
lr = 0.001,
Trainprob = 0.5,
useEmbedding = True,
numEmbedding = 128
)
model.train(
generator,
logStep = 10,
saveStep = 1000,
maxStep = 100000
)
# 创建输入
def buildInputs(self):
numSeqs = self.numSeqs
numSteps = self.numSteps
numClasses = self.numClasses
numEmbedding = self.numEmbedding
useEmbedding = self.useEmbedding
with tf.name_scope('inputs'):
self.inData = tf.placeholder(tf.int32, shape=(numSeqs, numSteps), name='inData')
self.targets = tf.placeholder(tf.int32, shape=(numSeqs, numSteps), name='targets')
self.keepProb = tf.placeholder(tf.float32, name='keepProb')
# 中文
if useEmbedding:
with tf.device("/cpu:0"):
embedding = tf.get_variable('embedding', [numClasses, numEmbedding])
self.lstmInputs = tf.nn.embedding_lookup(embedding, self.inData)
# 英文
else:
self.lstmInputs = tf.one_hot(self.inData, numClasses)
# 创建单个Cell
def buildCell(self, lstmSize, keepProb):
basicCell = tf.nn.rnn_cell.BasicLSTMCell(lstmSize)
drop = tf.nn.rnn_cell.DropoutWrapper(basicCell, output_keep_prob=keepProb)
return drop
# 将单个Cell堆叠多层
def buildLstm(self):
lstmSize = self.lstmSize
numLayers = self.numLayers
keepProb = self.keepProb
numSeqs = self.numSeqs
numClasses = self.numClasses
with tf.name_scope('lstm'):
multiCell = tf.nn.rnn_cell.MultiRNNCell(
[self.buildCell(lstmSize, keepProb) for _ in range(numLayers)]
)
self.initial_state = multiCell.zero_state(numSeqs, tf.float32)
self.lstmOutputs, self.finalState = tf.nn.dynamic_rnn(multiCell, self.lstmInputs, initial_state=self.initial_state)
seqOutputs = tf.concat(self.lstmOutputs, 1)
x = tf.reshape(seqOutputs, [-1, lstmSize])
with tf.variable_scope('softmax'):
softmax_w = tf.Variable(tf.truncated_normal([lstmSize, numClasses], stddev=0.1))
softmax_b = tf.Variable(tf.zeros(numClasses))
self.logits = tf.matmul(x, softmax_w) + softmax_b
self.prediction = tf.nn.softmax(self.logits, name='prediction')
# 计算损失
def buildLoss(self):
numClasses = self.numClasses
with tf.name_scope('loss'):
targets = tf.one_hot(self.targets, numClasses)
targets = tf.reshape(targets, self.logits.get_shape())
loss = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=targets)
self.loss = tf.reduce_mean(loss)
# 创建优化器
def buildOptimizer(self):
gradClip = self.gradClip
lr = self.lr
trainVars = tf.trainable_variables()
# 限制权重更新
grads, _ = tf.clip_by_global_norm(tf.gradients(self.loss, trainVars), gradClip)
trainOp = tf.train.AdamOptimizer(lr)
self.optimizer = trainOp.apply_gradients(zip(grads, trainVars))
# 训练
def train(self, data, logStep=10, saveStep=1000, savepath='./models/', maxStep=100000):
if not os.path.exists(savepath):
os.mkdir(savepath)
Trainprob = self.Trainprob
self.session = tf.Session()
with self.session as sess:
step = 0
sess.run(tf.global_variables_initializer())
state_now = sess.run(self.initial_state)
for x, y in data:
step += 1
feed_dict = {
self.inData: x,
self.targets: y,
self.keepProb: Trainprob,
self.initial_state: state_now
}
loss, state_now, _ = sess.run([self.loss, self.finalState, self.optimizer], feed_dict=feed_dict)
if step % logStep == 0:
print('[INFO]: <step>: {}/{}, loss: {:.4f}'.format(step, maxStep, loss))
if step % saveStep == 0:
self.saver.save(sess, savepath, global_step=step)
if step > maxStep:
self.saver.save(sess, savepath, global_step=step)
break
# 从前N个预测值中选
def GetTopN(self, preds, size, top_n=5):
p = np.squeeze(preds)
p[np.argsort(p)[:-top_n]] = 0
p = p / np.sum(p)
c = np.random.choice(size, 1, p=p)[0]
return c
def main(_):
reader = TxtReader(filename='voc.data')
model = CharRNN(
numClasses = reader.vocabLen,
mode = 'test',
lstmSize = 128,
numLayers = 2,
useEmbedding = True,
numEmbedding = 128
)
checkpoint = tf.train.latest_checkpoint('./models/')
model.load(checkpoint)
key="雪花"
prime = reader.text2array(key)
array = model.test(prime, size=reader.vocabLen, n_samples=300)
print("《"+key+"》")
print(reader.array2text(array))
界面的定义和调用
1、界面布局:
root = tk.Tk()
root.title('AI写歌词')
# 背景
canvas = tk.Canvas(root, width=800, height=500, bd=0, highlightthickness=0)
imgpath = '1.jpg'
img = Image.open(imgpath)
photo = ImageTk.PhotoImage(img)
imgpath2 = '3.jpg'
img2 = Image.open(imgpath2)
photo2 = ImageTk.PhotoImage(img2)
canvas.create_image(700, 400, image=photo)
canvas.pack()
label=tk.Label(text="请输入关键词:",font=("微软雅黑",20))
entry = tk.Entry(root, insertbackground='blue', highlightthickness=2,font=("微软雅黑",15))
entry.pack()
entry1 = tk.Text(height=15,width=115)
entry1.pack()
2、功能调用:
def song():
ss=entry.get()
f=open("1.txt","w")
f.write(ss)
f.close()
os.startfile("1.bat")
while True:
if os.path.exists("2.txt"):
f=open("2.txt")
ws=f.read()
f.close()
entry1.insert("0.0", ws)
break
try:
os.remove("1.txt")
os.remove("2.txt")
except:
pass
import tkinter as tk
from PIL import ImageTk, Image
import os
try:
os.remove("1.txt")
os.remove("2.txt")
except:
pass
import os
def song():
ss=entry.get()
f=open("1.txt","w")
f.write(ss)
f.close()
os.startfile("1.bat")
while True:
if os.path.exists("2.txt"):
f=open("2.txt")
ws=f.read()
f.close()
entry1.insert("0.0", ws)
break
try:
os.remove("1.txt")
os.remove("2.txt")
except:
pass
root = tk.Tk()
root.title('AI写歌词')
# 背景
canvas = tk.Canvas(root, width=800, height=500, bd=0, highlightthickness=0)
imgpath = '1.jpg'
img = Image.open(imgpath)
photo = ImageTk.PhotoImage(img)
imgpath2 = '3.jpg'
img2 = Image.open(imgpath2)
photo2 = ImageTk.PhotoImage(img2)
canvas.create_image(700, 400, image=photo)
canvas.pack()
label=tk.Label(text="请输入关键词:",font=("微软雅黑",20))
entry = tk.Entry(root, insertbackground='blue', highlightthickness=2,font=("微软雅黑",15))
entry.pack()
entry1 = tk.Text(height=15,width=115)
entry1.pack()
bnt = tk.Button(width=15,height=2,image=photo2,command=song)
canvas.create_window(100, 50, width=200, height=30,
window=label)
canvas.create_window(500, 50, width=630, height=30,
window=entry)
canvas.create_window(400, 100, width=220, height=50,
window=bnt)
canvas.create_window(400, 335, width=600, height=400,
window=entry1)
root.mainloop()
作者简介 :
李秋键,CSDN 博客专家,CSDN达人课作者。硕士在读于中国矿业大学,开发有taptap安卓武侠游戏一部,vip视频解析,文意转换工具,写作机器人等项目,发表论文若干,多次高数竞赛获奖等等。
AI修复100年前晚清影像喜提热搜,这两大算法立功了
CycleGan人脸转为漫画脸,牛掰的知识又增加了 | 附代码 用大白话彻底搞懂 HBase RowKey 详细设计 为什么黑客无法攻击公开的区块链? 再见 Python,Hello Julia! 百万人学AI 万人在线大会, 15+场直播抢先看!
你点的每个“在看”,我都认真当成了AI
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/
关注网络尖刀微信公众号
随时掌握互联网精彩
随时掌握互联网精彩
赞助链接
排名
热点
搜索指数
- 1 为基层减负赋能 促干部实干担当 7922626
- 2 泽连斯基:停火至少需要20万维和人员 7924648
- 3 冷冷冷 多地将冻成这样“紫” 7890747
- 4 两新扩围落地实施 带动产销两旺 7793724
- 5 一想到28号全员洗头就想笑 7624036
- 6 刘畅彻底黑化 7587537
- 7 身体这几个表现说明你太累了 7446795
- 8 赵今麦 00后的黑历史都是高清的 7306152
- 9 原来快递停运比双十一更有吸引力 7244218
- 10 刘烨13岁女儿近照 7192159