加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航
选自TowardsDataScience 作者:Kunal Dhariwal. 机器之心编译 参与:Jamin、杜伟、张倩
我们都知道,Numpy 是 Python 环境下的扩展程序库,支持大量的维度数组和矩阵运算;Pandas 也是 Python 环境下的数据操作和分析软件包,以及强大的数据分析库。二者在日常的数据分析中都发挥着重要作用,如果没有 Numpy 和 Pandas 的支持,数据分析将变得异常困难。但有时我们需要加快数据分析的速度,有什么办法可以帮助到我们吗?
x = np.array([12, 10, 12, 0, 6, 8, 9, 1, 16, 4, 6, 0])index_val = np.argpartition(x, -4)[-4:]
index_val
array([1, 8, 2, 0], dtype=int64)np.sort(x[index_val])
array([10, 12, 12, 16])
array1 = np.array([0.12,0.17,0.24,0.29])
array2 = np.array([0.13,0.19,0.26,0.31])# with a tolerance of 0.1, it should return False:
np.allclose(array1,array2,0.1)
False# with a tolerance of 0.2, it should return True:
np.allclose(array1,array2,0.2)
True
x = np.array([3, 17, 14, 23, 2, 2, 6, 8, 1, 2, 16, 0])np.clip(x,2,5)
array([3, 5, 5, 5, 2, 2, 5, 5, 2, 2, 5, 2])
# Random integers
array = np.random.randint(20, size=12)
array
array([ 0, 1, 8, 19, 16, 18, 10, 11, 2, 13, 14, 3])# Divide by 2 and check if remainder is 1
cond = np.mod(array, 2)==1
cond
array([False, True, False, True, False, False, False, True, False, True, False, True])# Use extract to get the values
np.extract(cond, array)
array([ 1, 19, 11, 13, 3])# Apply condition on extract directly
np.extract(((array < 3) | (array > 15)), array)
array([ 0, 1, 19, 16, 18, 2])
y = np.array([1,5,6,8,1,7,3,6,9])# Where y is greater than 5, returns index position
np.where(y>5)
array([2, 3, 5, 7, 8], dtype=int64),)# First will replace the values that match the condition,
# second will replace the values that does not
np.where(y>5, "Hit", "Miss")
array(['Miss', 'Miss', 'Hit', 'Hit', 'Miss', 'Hit', 'Miss', 'Hit', 'Hit'],dtype='<U4')
a = np.array([1,5,6,8,1,7,3,6,9])print("50th Percentile of a, axis = 0 : ",
np.percentile(a, 50, axis =0))
50th Percentile of a, axis = 0 : 6.0b = np.array([[10, 7, 4], [3, 2, 1]])print("30th Percentile of b, axis = 0 : ",
np.percentile(b, 30, axis =0))
30th Percentile of b, axis = 0 : [5.1 3.5 1.9]
具有异构类型列的表格数据,如 SQL 表或 Excel 表;
有序和无序 (不一定是固定频率) 的时间序列数据;
带有行/列标签的任意矩阵数据(同构类型或者是异构类型);
其他任意形式的统计数据集。事实上,数据根本不需要标记就可以放入 Pandas 结构中。
容易处理浮点数据和非浮点数据中的 缺失数据(用 NaN 表示);
大小可调整性: 可以从 DataFrame 或者更高维度的对象中插入或者是删除列;
显式数据可自动对齐: 对象可以显式地对齐至一组标签内,或者用户可以简单地选择忽略标签,使 Series、 DataFrame 等自动对齐数据;
灵活的分组功能,对数据集执行拆分-应用-合并等操作,对数据进行聚合和转换;
简化将数据转换为 DataFrame 对象的过程,而这些数据基本是 Python 和 NumPy 数据结构中不规则、不同索引的数据;
基于标签的智能切片、索引以及面向大型数据集的子设定;
更加直观地合并以及连接数据集;
更加灵活地重塑、转置(pivot)数据集;
轴的分级标记 (可能包含多个标记);
具有鲁棒性的 IO 工具,用于从平面文件 (CSV 和 delimited)、 Excel 文件、数据库中加在数据,以及从 HDF5 格式中保存 / 加载数据;
时间序列的特定功能: 数据范围的生成以及频率转换、移动窗口统计、数据移动和滞后等。
import io
import requests# I am using this online data set just to make things easier for you guys
url = "https://raw.github.com/vincentarelbundock/Rdatasets/master/csv/datasets/AirPassengers.csv"
s = requests.get(url).content# read only first 10 rows
df = pd.read_csv(io.StringIO(s.decode('utf-8')),nrows=10 , index_col=0)
# create a dataframe
dframe = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['India', 'USA', 'China', 'Russia'])#compute a formatted string from each floating point value in frame
changefn = lambda x: '%.2f' % x# Make changes element-wise
dframe['d'].map(changefn)
# max minus mix lambda fn
fn = lambda x: x.max() - x.min()# Apply this on dframe that we've just created above
dframe.apply(fn)
# Using the dataframe we created for read_csv
filter1 = df["value"].isin([112])
filter2 = df["time"].isin([1949.000000])df [filter1 & filter2]
# creating sample series
data = pd.Series(['India', 'Pakistan', 'China', 'Mongolia'])# Assigning issue that we face
data1= data
# Change a value
data1[0]='USA'
# Also changes value in old dataframe
data# To prevent that, we use
# creating copy of series
new = data.copy()# assigning new values
new[1]='Changed value'# printing data
print(new)
print(data)
# We'll use the same dataframe that we used for read_csv
framex = df.select_dtypes(include="float64")# Returns only time column
# Create a sample dataframe
school = pd.DataFrame({'A': ['Jay', 'Usher', 'Nicky', 'Romero', 'Will'],
'B': ['Masters', 'Graduate', 'Graduate', 'Masters', 'Graduate'],
'C': [26, 22, 20, 23, 24]})# Lets create a pivot table to segregate students based on age and course
table = pd.pivot_table(school, values ='A', index =['B', 'C'],
columns =['B'], aggfunc = np.sum, fill_value="Not Available")
table
原文链接:https://towardsdatascience.com/12-amazing-pandas-numpy-functions-22e5671a45b8
「完」
转自:数据派THU ;
版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。
合作请加QQ:365242293
更多相关知识请回复:“ 月光宝盒 ”;
数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/
随时掌握互联网精彩
- 1 为基层减负赋能 促干部实干担当 7941299
- 2 泽连斯基:停火至少需要20万维和人员 7941131
- 3 冷冷冷 多地将冻成这样“紫” 7898050
- 4 两新扩围落地实施 带动产销两旺 7736378
- 5 一想到28号全员洗头就想笑 7696251
- 6 刘畅彻底黑化 7528649
- 7 身体这几个表现说明你太累了 7468762
- 8 赵今麦 00后的黑历史都是高清的 7389893
- 9 原来快递停运比双十一更有吸引力 7225306
- 10 刘烨13岁女儿近照 7113031