【资源】机器学习数学全书,1900页PDF下载
AI WORLD 2019世界人工智能峰会明日开幕!
新智元报道
新智元报道
编辑:大明
【新智元导读】要搞机器学习离不开数学,本文分享一本来自宾夕法尼亚大学计算机系教授Jean Gallier主编的面向机器学习的“数学全书”,内容涵盖线性代数、概率统计、拓扑学、微积分、最优化理论等面向ML的数学知识,共计1900余页,快来下载收藏吧!来新智元 AI 朋友圈与 AI 大咖一起参与讨论吧~
机器学习,特别是深度学习离不开数学,深度学习的算法和模型的搭建,都需要重要的数学工具作为支撑。不管是对机器学习研究人员,还是立志走上机器学习和AI研究之路的学生来说,打好坚实的数学基础是都至关重要的。
在现行的主要机器学习教程中,基本上都会在书中最开始给出必要的数学知识,但一般都比较简略,这些教材一般默认读者已经具备了必要的数学知识。
对于没有掌握这些知识的读者来说,很多人需要去学习巩固,甚至在某些学科上从零开始学习。机器学习涉及到的数学学科背景知识比较广泛,除了必须掌握的线性代数、概率统计之外,还需要拓扑学、微积分、最优化理论等学科知识。

宾夕法尼亚大学计算机和信息学教授Jean Gallier就与他人合作编撰了一部“面向计算机和机器学习的数学全书”。这着实是本大部头,全书共计1900多页,涵盖了机器学习和深度学习相关的多个数学学科,包括线性代数,拓扑学、微分计算和最优化理论等。这本书的PDF电子版现已放出,需要的读者可以免费下载。
下载链接:
https://www.cis.upenn.edu/~jean/math-deep.pdf
全书共分九大部分(不包括附录),共1900余页。以下结合总目录,对本书章节内容进行简要介绍:
第一部分:线性代数。本部分篇幅最长,共23章,750余页
第二部分:线性与射影几何,共3章,170余页。

第三部分:双线性形式几何,共3章,约100页

第四部分:Algebra: PID’s, UFD’s, NoetherianRings, Tensors, Modules over a PID, Normal Forms,共7章,约280页
第五部分:拓扑学和微积分,共3章,约130页

第六部分:最优化理论初步,共4章,约60页

第七部分:线性优化,共4章,约100页

第八部分:非线性优化,共5章,约250页

第九部分:机器学习应用,共3章,约100页

第十部分:附录,共2章,约30页
本书内容全面,讲解详细,有需要的读者可作为工具书使用,确实,它的页数也确实相当于一本大型工具书了。
下载链接:
https://www.cis.upenn.edu/~jean/math-deep.pdf
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/

随时掌握互联网精彩
- 1 聆听习主席重要讲话 军队代表这样说 7943262
- 2 委员:建议把手机还给孩子 7982475
- 3 甄子丹怼台媒:你这个人很坏 7870882
- 4 代表委员答网友问:什么是AI幻觉 7727069
- 5 张文宏现场点名记者减肥:你太胖了 7604396
- 6 美媒用极为罕见形容《哪吒2》霸榜 7511156
- 7 #大疆美的为何强制员工到点下班# 7404057
- 8 三清山惊现肌肉帅哥 阿姨笑容止不住 7360542
- 9 特朗普打球时不明飞机闯入 F-16拦截 7245284
- 10 “好房子”长这样 7106792