Yann LeCun都推荐的深度学习资料合集!

百家 作者:InfoQ 2019-07-07 04:23:44

作者 | Sebastian Raschka
译者 | Sambodhi
编辑 | Vincent
本文是 GitHub 上的一个项目,截止到 AI 前线翻译之时,Star 数高达 7744 星,据说连深度学习界的大神 Yann LeCun 都为之点赞,可见该项目收集的深度学习资料合集质量之高,广受欢迎,AI 前线对本文翻译并分享,希望能够帮到有需要的读者。
传统机器学习
  • 感知器

  • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb

  • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb

  • 逻辑回归

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb

  • Softmax 回归(多项逻辑回归)

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb

    多层感知器
    • 多层感知器

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb

  • 具有 Dropout 的多层感知器

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb

  • 具有批量归一化的多层感知器

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb

  • 具有从头开始反向传播的多层感知器

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb

    卷积神经网络 
    基本
    • 卷积神经网络

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-basic.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb

  • 具有 He 初始化的卷积神经网络

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb

    概念
    • 用等效卷积层替换全连接

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb

    全卷积
    • 全卷积神经网络

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb

    AlexNet
    • CIFAR-10 上的 AlexNet

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb

    VGG
    • 卷积神经网络 VGG-16

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb

  • 在 CelebA 上训练的 VGG-16 性别分类器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb

  • 卷积神经网络 VGG-19

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb

    ResNet
    • ResNet 与残差块

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb

  • 在 MNIST 上训练的 ResNet-18 数字分类器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb

  • 在 CelebA 上训练的 ResNet-18 性别分类器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb

  • 在 MNIST 上训练的 ResNet-34 数字分类器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb

  • 在 CelebA 上训练的 ResNet-34 性别分类器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb

  • 在 MNIST 上训练的 ResNet-50 数字分类器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb

  • 在 CelebA 上训练的 ResNet-50 性别分类器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb

  • 在 CelebA 上训练的 ResNet-101 性别分类器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb

  • 在 CIFAR-10 上训练的 ResNet-101

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-cifar10.ipynb

  • 在 CelebA 上训练的 ResNet-152 性别分类器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb

    网络中的网络
    • CIFAR-10 分类器网络中的网络

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb

    度量学习
    • 具有多层感知器的孪生网络

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb

    自编码器
    全连接自编码器
    • 自编码器

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-basic.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb

    卷积自编码器


    • 具有解卷积 / 转置卷积的卷积自编码器

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb

  • 具有解卷积(不具有池化操作)的卷积自编码器

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-conv-nneighbor.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv-nopool.ipynb

    • 具有最近邻插值的卷积自编码器

  • 在 CelebA 上训练的具有最近邻插值的卷积自编码器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb

  • 在 Quickdraw 上训练的具有最近邻插值的卷积自编码器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb

    变分自编码器
    • 变分自编码器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb

    • 卷积变分自编码器

    条件变分自编码器
    • 条件变分自编码器(具有重构损失中的标签)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb

  • 条件变分自编码器(不具有重构损失中的标签)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb

  • 卷积条件变分自编码器(具有重构损失中的标签)

    • PYTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb

  • 卷积条件变分自编码器(不具有重构损失中的标签)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb

    生成对抗网络
    • MNIST 上的全连接生成对抗网络

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb

  • MNIST 上的卷积生成对抗网络

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb

  • MNIST 上具有标签平滑的卷积生成对抗网络

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb

    递归神经网络
    多对一:情感分析 / 分类
    • 简单的单层递归神经网络(IMDB)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb

  • 打包序列以忽略填充字符的简单单层递归神经网络(IMDB)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb

  • 具有长短期记忆网络单元的递归神经网络(IMDB)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb

  • 具有长短期记忆网络单元和经预训练的 GloVe 词向量的递归神经网络(IMDB)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb

  • 具有长短期记忆网络单元和 CSV 格式的自有数据集的递归神经网络(IMDB)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb

  • 具有 GRU 单元的递归神经网络(IMDB)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

  • 多层双向递归神经网络(IMDB)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

    多对多 / 序列到序列
    • 为生成新文本(Charles Dickens)的简单字符递归神经网络

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

    序数回归
    • 序数回归卷积神经网络——CORAL w. ResNet34 on AFAD-Lite

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb

  • 序数回归卷积神经网络——Niu et al. 2016 w. ResNet34 on AFAD-Lite

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

  • 序数回归卷积神经网络——Beckham and Pal 2016 w. ResNet34 on AFAD-Lite

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-beckham2016-afadlite.ipynb

    要诀与技巧
    • 周期学习率

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb

    PyTorch 工作流和机制
    自定义数据集
    • 为自定义数据集使用 PyTorch 数据集加载实用程序——CSV 文件转换为 HDF5

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-csv.ipynb

  • 为自定义数据集使用 PyTorch 数据集加载使用程序——来自 CelebA 的面部图像

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb

  • 为自定义数据集使用 PyTorch 数据集加载使用程序——来自 Quickdraw 的图像

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb

  • 为自定义数据集使用 PyTorch 数据集加载使用程序——来自街景门牌号(SVHN)数据集的图像

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-svhn.ipynb

  • 为自定义数据集使用 PyTorch 数据集加载使用程序——亚洲人面部数据集(AFAD)

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-afad.ipynb

  • 为自定义数据集使用 PyTorch 数据集加载使用程序——历史彩色图像

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader_dating-historical-color-images.ipynb

    训练与预处理
    • 生成验证集拆分

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/validation-splits.ipynb

  • 具有固定内存的数据加载

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-cifar10-pinmem.ipynb

  • 图像标准化

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb

  • 图像转换示例

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb

  • 具有自己的文本文件的 Char-RNN

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

  • 具有自己的 CSV 文件的情感分类递归神经网络

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb

    并行计算
    • 使用数据并行的多 GPU——VGG-16 CelebA 上的性别分类器

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb

    其他
    • 顺序 API 和钩子

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/mlp-sequential.ipynb

  • 层内权重共享

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/cnn-weight-sharing.ipynb

  • 只使用 Matplotlib 在 Jupyter Notebook 绘制实时训练性能

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/plot-jupyter-matplotlib.ipynb

    Autograd
    • 在 PyTorch 中获取中间变量的梯度

    • PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/manual-gradients.ipynb

    TensorFlow 工作流和机制
    自定义数据集
    • 为 Mini-batch 训练使用 NumPy NPZ Archives 进行组块图像数据集

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb

  • 为 Mini-batch 使用 HDF5 进行存储图像数据集

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb

  • 使用输入管道从 TFRecords 文件读取数据

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb

  • 使用 Queue Runners 从硬盘直接馈入图像

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/file-queues.ipynb

  • 使用 TensorFlow 的数据集 API

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb

    训练和预处理
    • 保存和加载训练过的模型——从 TensorFlow 检查点文件和 NumPy NPZ Archives

    • TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb

    作者介绍

    Sebastian Raschka,机器学习研究者、开源贡献者。《Python 机器学习》作者,威斯康星大学麦迪逊分校统计学助理教授。

    原文链接:

    https://github.com/rasbt/deeplearning-models


    点个在看少个 bug ?

    关注公众号:拾黑(shiheibook)了解更多

    [广告]赞助链接:

    四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
    让资讯触达的更精准有趣:https://www.0xu.cn/

    公众号 关注网络尖刀微信公众号
    随时掌握互联网精彩
    赞助链接