食物图片变菜谱:这篇CVPR论文让人人都可以学习新料理

百家 作者:机器之心 2019-06-24 05:16:54

机器之心报道

参与:一鸣、路

根据 Facebook 的统计,Instgram 上的美食图片数量已经超过 3 亿张。然而,获取食物烹饪方法的途径依然有限,例如,通过烹饪网站或相关教程。怎样能够挖掘丰富食物图片背后的烹饪方法,让每个人都可以在家方便地学习新菜式呢?

Facebook 研究团队最近在 CVPR 2019 发表论文,提出了一种新思路。用户可以输入食物图片,并获得对应的食材和制作方法。在用户实验上的结果说明,用这种方法烹饪食物的成功率,比传统检索方法成功率更高。

看美食图片就能知道食谱?这个 AI 比美食家还灵么?



喜欢研究吃的人经常会在看到美味食物甚至食物图片时垂涎不已,甚至千方百计想弄明白怎么才能做出这道美食。


最近,Facebook 提出了一种 AI 方法,能够根据美食图片直接生成食谱!天啊,简直满足了天下爱吃且爱做饭的人的心愿啊~



这张图片中左侧为原图;右侧显示了食物名称、原料,甚至还有操作说明。有了这个 AI,只需要有美食图,就可以准备做饭,不用再费力查找食谱啦~


目前,Facebook 已经把这个项目开源了:


GitHub 地址:https://github.com/facebookresearch/inversecooking


reddit 用户 JonathanFly 将该项目做成了一个 Colab demo,参见:

https://gist.github.com/JonathanFly/33946a08080041e90e8360b25e263a4e#file-facebook-cooking-demo-ipynb


还用非食物的图片进行了尝试,结果令人捧腹。


比如,如果你使用皮卡丘的图片,这个系统会告诉你「皮卡丘的食谱」:



「皮卡丘」竟然被认成了万圣节幽灵饼干!原来皮卡丘是烤制而成的~


从图像到食谱,如何实现?


从图片中生成食谱需要同时理解组成食材和制作的过程(如切片、和其他材料搅拌等)。传统方法将这个问题视为检索任务,基于输入图片和数据集图片的相似度计算,将食谱从一个固定的数据集中检索出来。很明显,传统方法在数据集缺少某种食物制作方法的情况下就会失败。


有一种方法可以克服这一数据局限,即将图片到菜谱的问题视为一个条件生成任务。研究人员认为,与其直接从图片中获取菜谱,不如首先预测食物的材料,然后基于图像和食材生成食物制作方法。这样可以利用图片和食材的中间过程获取一些额外信息。


模型


模型主要由两部分构成,首先研究人员预训练一个图片编码器和一个食材解码器(ingredients decoder),提取输入图像的视觉特征来预测食材。然后训练一个食材编码器(ingredient encoder)和烹饪流程解码器(instruction decoder),根据输入图片的图像特征和已经预测到的食材,生成食物的名称和烹饪流程。


模型架构如下图所示:


图 2:模型的结构。模型的输入是食物图片,输出的是烹饪方法序列,而中间一步是基于图像生成食材清单。


具体来讲,烹饪流程解码器使用了三种不同的注意力策略:


图 3:烹饪流程解码器使用的注意力策略。Transformer 模型(a)中的注意力模块被替换成了三种不同的注意力模块(b-d),用于多种条件下的烹饪说明。


效果如何?


研究人员使用 Recipe1M [45] 数据集来训练和评估模型。该数据集包括从烹饪网站上爬取的 1,029,720 个食谱。在实验中,研究者仅使用了包含图片的食谱,并移除了使用少于两种食材或两道流程的食物。最终,实验使用了 252,547 个训练样本、54,255 个验证样本和 54,506 个测试样本。


研究人员对比了传统的检索方法和该研究提出的新方法,结果如下:


表 3:基线方法和论文方法的对比。左图为 IoU 和 F1 分数,右图为食材在烹饪指南上的精确率和召回率。


研究人员还进行了用户测试。他们从测试集中随机选择了 15 张图片,让用户根据提供的图片选择 20 种食材,并写下可能图片对应的菜谱。为了减少人类任务的复杂度,研究人员提高食材使用频率的阈值,减少了食材的选择数量。


表 4:用户测试。左图为基线方法、人类和论文方法判断食材的 IoU 和 F1 分数,右图为根据人类判断,这三种方法生成食谱的成功率。


实验结果说明,使用 AI 生成的食谱比检索方法生成的食谱效果更好。


这样的研究只是造福吃货吗?


这项研究通过对食物图片的研究,可以进一步猜测其食材和加工方式。这可以进一步方便人们学习新的食物制作、协助计算食物中每种成分的卡路里、创造新的菜谱。同时,该研究采用的方法可以进一步启发「根据图片预测长文本」的研究。


更何况,再也不用看着社交媒体上的美食流口水了。扫图出菜谱,人人都可以学着做~


参考链接:https://ai.facebook.com/blog/inverse-cooking/

https://www.reddit.com/r/MachineLearning/comments/c1tb5m/p_using_ai_to_generate_recipes_from_food_images/



本文为机器之心编译,转载请联系本公众号获得授权

✄------------------------------------------------

加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com

投稿或寻求报道:content@jiqizhixin.com

广告 & 商务合作:bd@jiqizhixin.com

关注公众号:拾黑(shiheibook)了解更多

[广告]赞助链接:

四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/

公众号 关注网络尖刀微信公众号
随时掌握互联网精彩
赞助链接