11个Python Pandas小技巧让你的工作更高效(附代码实例)

百家 作者:数据分析 2019-04-30 06:10:58

作者:Shiu-TangLi 翻译:吴振东 校对:王雨桐

本文约1800字,建议阅读6分钟。

本文为你介绍Pandas隐藏的炫酷小技巧,我相信这些会对你有所帮助。


或许本文中的某些命令你早已知晓,只是没意识到它还有这种打开方式。



Pandas是一个在Python中广泛应用的数据分析包。市面上有很多关于Pandas的经典教程,但本文介绍几个隐藏的炫酷小技巧,我相信这些会对你有所帮助。

 

1. read_csv


这是读取数据的入门级命令。当要你所读取的数据量特别大时,试着加上这个参数 nrows = 5,就可以在载入全部数据前先读取一小部分数据。如此一来,就可以避免选错分隔符这样的错误啦(数据不一定都是用逗号来分隔)。


(或者在linux系统中,你可以使用‘head’来展示任意文本文件的前五行:head -c 5 data.txt


接下来,用 df.columns.tolist() 可以提取每一列并转换成list。还可以加上 usecols = [‘c1’, ‘c2’, … ]来载入所需要的指定列。另外,如果你知道某些列的类型,你可以加上dtype = {‘c1’: str, ‘c2’: int, …} ,这样会加快载入的速度。加入这些参数的另一大好处是,如果这一列中同时含有字符串和数值类型,而你提前声明把这一列看作是字符串,那么这一列作为主键来融合多个表时,就不会报错了。

 

2. select_dtypes


如果已经在Python中完成了数据的预处理,这个命令可以帮你节省一定的时间。在读取了表格之后,每一列的默认数据类型将会是bool,int64,float64,object,category,timedelta64,或者datetime64。首先你可以观察一下大致情况,使用:

df.dtypes.value_counts()

来了解你的dataframe的每项数据类型,然后再使用:

df.select_dtypes(include=['float64''int64'])

获取一个仅由数值类型组成的sub-dataframe。

 

3. copy


如果你没听说过它的话,我不得强调它的重要性。输入下面的命令:

import pandas as pddf1 = pd.DataFrame({ 'a':[0,0,0], 'b': [1,1,1]})df2 = df1df2['a'] = df2['a'] + 1df1.head()

你会发现df1已经发生了改变。这是因为df2 = df1并不是生成一个df1的复制品并把它赋值给df2,而是设定一个指向df1的指针。所以只要是针对df2的改变,也会相应地作用在df1上。为了解决这个问题,你既可以这样做:

df2 = df1.copy()

也可以这样做:

from copy import deepcopydf2 = deepcopy(df1)


4. map


这个炫酷的命令让你的数据转换变得轻松。首先定义一个

dictionary,“key”是转换前的旧值,而“values”是转换后的新值。

level_map = {1: 'high', 2: 'medium', 3: 'low'}df['c_level'] = df['c'].map(level_map)

几个适用情景:把True、False,转换成1、0(为了建模);定义级别;使用字典编码。

 

5. 用不用apply?


如果我们想在现有几列的基础上生成一个新列,并一同作为输入,那么有时apply函数会相当有帮助。

def rule(x, y):    if x == 'high' and y > 10:         return 1    else:         return 0df = pd.DataFrame({ 'c1':[ 'high' ,'high', 'low', 'low'], 'c2': [0, 23, 17, 4]})df['new'] = df.apply(lambda x: rule(x['c1'], x['c2']), axis =  1)df.head()

在上面的代码中,我们定义了一个有两个输入变量的函数,并依靠apply函数使其作用到列“c1”和“c2”上。

 

但是apply函数在有些情况下实在是太慢了。如果你是想计算“c1”和“c2”列的最大值,你当然可以这样去做:

df['maximum'] = df.apply(lambda x: max(x['c1'], x['c2']), axis = 1)

但你会发现相比于以下命令,apply实在是慢太多了:

df['maximum'] = df[['c1','c2']].max(axis =1)

结论:如果你可以采用其他内置函数(他们一般速度更快),请不要使用apply。比如说,如果你想把“c”列的值近似取整,那么请用round(df[‘c’], 0)或df['c'],round(0)而不是上文的apply函数。

 

7. value counts


这个命令用于检查值的分布。你想要检查下“c”列中出现的值以及每个值所出现的频率,可以使用:

df['c'].value_counts(

下面是一些有用的小技巧/参数:


  • normalize = True:查看每个值出现的频率而不是频次数。

  • dropna = False: 把缺失值也保留在这次统计中。

  • sort = False: 将数据按照值来排序而不是按照出现次数排序。

  • df[‘c].value_counts().reset_index(): 将这个统计表转换成pandas的dataframe并且进行处理。

 

8. 缺失值的数量


当构建模型时,我们可能会去除包含过多缺失值或是全部是缺失值的行。这时可以使用.isnull()和.sum()来计算指定列缺失值的数量。

import pandas as pdimport numpy as npdf = pd.DataFrame({ 'id': [1,2,3], 'c1':[0,0,np.nan], 'c2': [np.nan,1,1]})df = df[['id', 'c1', 'c2']]df['num_nulls'] = df[['c1', 'c2']].isnull().sum(axis=1)df.head()

9. 依据指定ID来选取行


在SQL中我们可以使用      SELECT * FROM … WHERE ID in (‘A001’,‘C022’, …)来获取含有指定ID的记录。如果你也想在Pandas中做类似的事情,你可以使用:

df_filter = df['ID'].isin(['A001','C022',...])df[df_filter]

10. 基于分位数分组


面对一列数值,你想将这一列的值进行分组,比如说最前面的5%放入组别一,5-20%放入组别二,20%-50%放入组别三,最后的50%放入组别四。当然,你可以使用pandas.cut,但你也可以使用下面这种选择:

import numpy as npcut_points = [np.percentile(df['c'], i) for i in [50, 80, 95]]df['group'] = 1for i in range(3):    df['group'] = df['group'] + (df['c'] < cut_points[i])# or < = cut_points[i]

这种方法的运行速度很快(并没有使用到apply函数)。

 

11. to_csv


这又是一个大家都会用的命令。我想在这里列出两个小技巧。首先是

print(df[:5].to_csv())

你可以使用这个命令打印出将要输出文件中的前五行记录。


另一个技巧是用来处理整数值和缺失值混淆在一起的情况。如果一列含有缺失值和整数值,那么这一列的数据类型会变成float而不是int。当导出表格时,你可以加上float_format=‘%.0f’以便将所有的浮点数近似成整数。当你想把所有列的输出值都变成整数格式时,就可以使用这个技巧,这样一来你就会告别所有数值后带“.0”的烦恼。


原文标题:

10 PythonPandas tricks that make your work more efficient

原文链接:

https://towardsdatascience.com/10-python-pandas-tricks-that-make-your-work-more-efficient-2e8e483808ba

译者简介:吴振东,法国洛林大学计算机与决策专业硕士。现从事人工智能和大数据相关工作,以成为数据科学家为终生奋斗目标。来自山东济南,不会开挖掘机,但写得了Java、Python和PPT。

转自:数据派THU 公众号;

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。

END

合作请加QQ:365242293  

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

关注公众号:拾黑(shiheibook)了解更多

[广告]赞助链接:

四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/

公众号 关注网络尖刀微信公众号
随时掌握互联网精彩
赞助链接