2019将成机器学习关键年:中美AI或有一战

百家 作者:人工智能学家 2018-10-21 13:37:08

作者 | Hussain Fakhruddin

译者 | 大小非

编辑 | Vincent 

来源 | AI前线(ID:ai-front)


导读:2019 年将是机器学习关键的一年。ML 已经成为全球数字转型的关键要素之一——到 2021 年底,累计投资预计将达到 580 亿美元。在企业应用领域,本世纪末,ML 工具和解决方案的使用率预计将达到 65%。AI-as-a-Service 已经到来!


“智能助手”的时代已经来临。机器学习 (ML) 已经成为全球数字转型的关键要素之一——到 2021 年底,累计投资(人工智能和 ML)预计将达到 580 亿美元。仅在美国,深度学习软件的市场规模就将从 2018 年的 1 亿美元跃升至 2025 年的 9.35 亿美元。全球机器学习行业的年平均增长率约为 42%,到 2022 年第三季度,其价值将只会略低于 90 亿美元。


在企业领域,机器学习用例的增长在过去的几年里也很显著。据国际数据公司 (IDC) 的一份报告显示,到本世纪末,整个企业场景对 ML 工具和解决方案的使用率预计将达到 65%,其费用支出将高达 460 亿美元。平均而言,55% 的公司首席信息官认为 ML 是加速业务发展的核心优先事项之一。在这里,我们将重点介绍机器学习在 2019 年将如何继续发展:


1.ML 的新用例即将出现


今年早些时候,有消息称,美国陆军将使用定制的机器学习软件工具 (由总部位于芝加哥的 Uptake Technologies 公司开发) 对作战车辆进行预测性维修。换句话说,ML 能够预测出车辆在什么时候可能需要修理服务以及服务的类型。这种“智能”功能将由嵌入到汽车引擎中的先进传感器提供支持。ML 的另一个有趣的用例是 基于先期股票收益记录的股票市场波动预测。最近的一项研究表明,ML 的这种股票市场预测有 60% 以上的准确率——这已经足够令人叹为观止了。在医学科学和医疗保健领域,ML 模型被用来预测一个人的死亡概率 (在这种情况下,准确率远远超过 90%)。在零售、营销和销售以及工业、制造业领域,ML 的使用范围也正在一步步扩大。通过“阅读”和“解释”过去的数据来预测未来——这是机器学习的本质——技术无疑正在变得越来越精细。


注意:人工智能应用和 ML 工具的概念不再局限于外部机器人。现在它们已经成为业务工作流和日常应用程序的一部分了。


2.“ML 硬件优化”使用率将上升



3.ML 对云的使用率将提升


到 2020 年,全球云计算市场将以每年 25% 的速度增长,达到 4100 亿美元以上。企业中对 ML 的不断采用是这种激增背后的一个关键驱动因素。为了成功地实现“机器学习文化”,企业必须比以往任何时候都更加注重创新——特别强调改进云托管和基础设施参数。随着时间的推移,越来越多的“AI 专用工具和系统”(除了商业关键信息和大数据) 必须存储在云上,而后者需要有足够的安全性和可用性标准。一个健壮的、可扩展的云支持将帮助企业从机器学习无缝过渡到深度学习,为最终用户提供更大的价值,并提高他们的 ROI。


注:从 2019 年开始,普通用户将开始对人工智能和 ML 过程的工作原理有更清晰的了解——这要归功于详细的“人工智能审计跟踪”。鉴于人工智能领域(比如:医学科学)的关键性质,人们自然想知道这项技术是如何得出结论进行预测的。


4. 继续推进胶囊网络




5. 人工智能助手的兴起


Siri,谷歌 Assistant 和 Alexa 已经成为人们日常生活的一部分,再过五年左右,全球人工智能助手市场的价值将达到 180 亿美元。更重要的是,年复一年,每一位顶尖的“智能助手”都在变得越来越聪明(在 5000 个一般性问题的基础上,Siri 成功回答了 31% 左右的问题,其中近 80% 的回答是正确的:在同一项调查中,谷歌 Assistant 回答了 67% 以上的问题,准确率略低于 88%)。随着机器学习范围的扩大,人工智能助手已经不只是存在于智能家居和手机中了。从明年开始,现代和起亚将开始在新车型中提供内置的、人工智能驱动的虚拟助理系统。这些助理将能够执行无数的任务——从远程家庭控制和汽车控制功能(通过语音),目的地路径规划(基于之前的偏好)和导航指南。在生活的各个方面,具有 ML 能力的“智能助手”将使生活比以往任何时候都更简单。


注意:智能聊天机器人(带有人工智能)正越来越多的被人被使用。然而,我们仍需保持警惕——因为训练数据集中的误差会对用户体验造成严重损害。微软的“Tay”聊天机器人就是这种失败的典型例子。


6. 机器学习将解决更多“真正的问题”



注意:最近的一项研究发现,89% 的首席信息官计划在其业务中使用 ML 工具及应用程序。


7. 机器人的世界?



注:机器学习在精密农业中也扮演着重要的角色。用于农业的智能杆子,带有深根传感器和专用的 ML 模块,可以帮助农民做出更多“知情”的决定。


8. 前沿语音技术




9. 中美人工智能市场会有一场大战



注意:开发人员不再依赖第三方 API,而是越来越多地转向为 ML 应用程序开发自己的 API。有许多对开发人员来讲友好的组装套件和移动 SDK 来帮助他们实现功能。


10. 更多更好的机器学习平台



11. 彻底改变人类与科技互动的方式



注:用于战争的“杀手机器人”的开发可能是令人担忧的。最近的一份报告预测,人工智能在军事应用方面的投资不断增加,很可能导致 2040-2050 年间爆发一场核战争。


12.NLP 变得更加精确





未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

关注公众号:拾黑(shiheibook)了解更多

[广告]赞助链接:

四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/

公众号 关注网络尖刀微信公众号
随时掌握互联网精彩
赞助链接