手把手:Python加密货币价格预测9步走,视频+代码

百家 作者:大数据文摘 2018-05-04 06:26:18



YouTube网红小哥Siraj Raval系列视频又和大家见面啦!今天要讲的是加密货币价格预测,包含大量代码,还用一个视频详解具体步骤,不信你看了还学不会!


点击观看详解视频

时长22分钟

有中文字幕

<iframe class="video_iframe" data-vidtype="2" allowfullscreen="" frameborder="0" data-ratio="1.7647058823529411" data-w="480" data-src="http://v.qq.com/iframe/player.html?vid=b0643h6sq4i&width=354&height=199.125&auto=0" width="354" height="199.125" data-vh="199.125" data-vw="354" style="display: none; width: 354px !important; height: 199.125px !important;"></iframe>

预测加密货币价格其实很简单,用Python+Keras,再来一个循环神经网络(确切说是双向LSTM),只需要9步就可以了!比特币以太坊价格预测都不在话下。


这9个步骤是:

  • 数据处理

  • 建模

  • 训练模型

  • 测试模型

  • 分析价格变化

  • 分析价格百分比变化

  • 比较预测值和实际数据

  • 计算模型评估指标

  • 结合在一起:可视化



数据处理


导入Keras、Scikit learn的metrics、numpy、pandas、matplotlib这些我们需要的库。


## Keras for deep learning
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from keras.layers import Bidirectional
from keras.models import Sequential

## Scikit learn for mapping metrics
from sklearn.metrics import mean_squared_error

#for logging
import time

##matrix math
import numpy as np
import math

##plotting
import matplotlib.pyplot as plt

##data processing
import pandas as pd


首先,要对数据进行归一化处理。关于数据处理的原则,有张大图,大家可以在大数据文摘公众号后台对话框内回复“加密货币”查看高清图。



def load_data(filename, sequence_length):
   """
   Loads the bitcoin data
   
   Arguments:
   filename -- A string that represents where the .csv file can be located
   sequence_length -- An integer of how many days should be looked at in a row
   
   Returns:
   X_train -- A tensor of shape (2400, 49, 35) that will be inputed into the model to train it
   Y_train -- A tensor of shape (2400,) that will be inputed into the model to train it
   X_test -- A tensor of shape (267, 49, 35) that will be used to test the model's proficiency
   Y_test -- A tensor of shape (267,) that will be used to check the model's predictions
   Y_daybefore -- A tensor of shape (267,) that represents the price of bitcoin the day before each Y_test value
   unnormalized_bases -- A tensor of shape (267,) that will be used to get the true prices from the normalized ones
   window_size -- An integer that represents how many days of X values the model can look at at once
   """
   #Read the data file
   raw_data
= pd.read_csv(filename, dtype = float).values
   
   #Change all zeros to the number before the zero occurs
   for x in range(0, raw_data.shape[0]):
       for y in range(0, raw_data.shape[1]):
           if(raw_data[x][y] == 0):
               raw_data[x][y]
= raw_data[x-1][y]
   
   #Convert the file to a list
   data = raw_data.tolist()
   
   #Convert the data to a 3D array (a x b x c)
   #Where a is the number of days, b is the window size, and c is the number of features in the data file
   result = []

   for index in range(len(data) - sequence_length):
       result.append(data[index: index + sequence_length])
   
   #Normalizing data by going through each window
   #Every value in the window is divided by the first value in the window, and then 1 is subtracted
 
 d0 = np.array(result)
   dr = np.zeros_like(d0)
   dr[:,1:,:] = d0[:,1:,:] / d0[:,0:1,:] - 1
   
   #Keeping the unnormalized prices for Y_test
   #Useful when graphing bitcoin price over time later

   start = 2400
   end = int(dr.shape[0] + 1)
   unnormalized_bases = d0[start:end,0:1,20]
   
   #Splitting data set into training (First 90% of data points) and testing data (last 10% of data points)
   split_line = round(0.9 * dr.shape[0])
   training_data = dr[:int(split_line), :]
   
   #Shuffle the data
   np.random.shuffle(training_data)
   
   #Training Data
   X_train = training_data[:, :-1]
   Y_train = training_data[:, -1]
   Y_train = Y_train[:, 20]
   
   #Testing data
   X_test = dr[int(split_line):, :-1]
   Y_test = dr[int(split_line):, 49, :]
   Y_test = Y_test[:, 20]

   #Get the day before Y_test's price
   Y_daybefore = dr[int(split_line):, 48, :]
   Y_daybefore = Y_daybefore[:, 20]
   
   #Get window size and sequence length
   sequence_length = sequence_length
   window_size = sequence_length - 1 #because the last value is reserved as the y value
   
   return X_train, Y_train, X_test, Y_test, Y_daybefore, unnormalized_bases, window_size


建模




我们用到的是一个3层RNN,dropout率20%。


双向RNN基于这样的想法:时间t的输出不仅依赖于序列中的前一个元素,而且还可以取决于未来的元素。比如,要预测一个序列中缺失的单词,需要查看左侧和右侧的上下文。双向RNN是两个堆叠在一起的RNN,根据两个RNN的隐藏状态计算输出。


举个例子,这句话里缺失的单词gym要查看上下文才能知道(文摘菌:everyday?):


I go to the (  ) everyday to get fit.

def initialize_model(window_size, dropout_value, activation_function, loss_function, optimizer):
   """
   Initializes and creates the model to be used
   
   Arguments:
   window_size -- An integer that represents how many days of X_values the model can look at at once
   dropout_value -- A decimal representing how much dropout should be incorporated at each level, in this case 0.2
   activation_function -- A string to define the activation_function, in this case it is linear
   loss_function -- A string to define the loss function to be used, in the case it is mean squared error
   optimizer -- A string to define the optimizer to be used, in the case it is adam
   
   Returns:
   model -- A 3 layer RNN with 100*dropout_value dropout in each layer that uses activation_function as its activation
            function, loss_function as its loss function, and optimizer as its optimizer
   """
   
#Create a Sequential model using Keras
   model
= Sequential()

   #First recurrent layer with dropout
   model.add(Bidirectional(LSTM(window_size, return_sequences=True), input_shape=(window_size, X_train.shape[-1]),))
   model.add(Dropout(dropout_value))

   #Second recurrent layer with dropout
   model.add(Bidirectional(LSTM((window_size*2), return_sequences=True)))
   model.add(Dropout(dropout_value))

   #Third recurrent layer
   model.add(Bidirectional(LSTM(window_size, return_sequences=False)))

   #Output layer (returns the predicted value)
   model.add(Dense(units=1))
   
   #Set activation function
   model.add(Activation(activation_function))

   #Set loss function and optimizer

   model.compile(loss=loss_function, optimizer=optimizer)
   
   return model


训练模型


这里取batch size = 1024,epoch times = 100。我们需要最小化均方误差MSE。


def fit_model(model, X_train, Y_train, batch_num, num_epoch, val_split):
   """
   Fits the model to the training data
   
   Arguments:
   model -- The previously initalized 3 layer Recurrent Neural Network
   X_train -- A tensor of shape (2400, 49, 35) that represents the x values of the training data
   Y_train -- A tensor of shape (2400,) that represents the y values of the training data
   batch_num -- An integer representing the batch size to be used, in this case 1024
   num_epoch -- An integer defining the number of epochs to be run, in this case 100
   val_split -- A decimal representing the proportion of training data to be used as validation data
   
   Returns:
   model -- The 3 layer Recurrent Neural Network that has been fitted to the training data
   training_time -- An integer representing the amount of time (in seconds) that the model was training
   """
 
 #Record the time the model starts training
   start
= time.time()

   #Train the model on X_train and Y_train
   model.fit(X_train, Y_train, batch_size= batch_num, nb_epoch=num_epoch, validation_split= val_split)

   #Get the time it took to train the model (in seconds)
   training_time
= int(math.floor(time.time() - start))
   return model, training_time


测试模型


def test_model(model, X_test, Y_test, unnormalized_bases):
   """
   Test the model on the testing data
   
   Arguments:
   model -- The previously fitted 3 layer Recurrent Neural Network
   X_test -- A tensor of shape (267, 49, 35) that represents the x values of the testing data
   Y_test -- A tensor of shape (267,) that represents the y values of the testing data
   unnormalized_bases -- A tensor of shape (267,) that can be used to get unnormalized data points
   
   Returns:
   y_predict -- A tensor of shape (267,) that represnts the normalized values that the model predicts based on X_test
   real_y_test -- A tensor of shape (267,) that represents the actual prices of bitcoin throughout the testing period
   real_y_predict -- A tensor of shape (267,) that represents the model's predicted prices of bitcoin
   fig -- A branch of the graph of the real predicted prices of bitcoin versus the real prices of bitcoin
   """
 
 #Test the model on X_Test
   y_predict
= model.predict(X_test)

   #Create empty 2D arrays to store unnormalized values
   real_y_test = np.zeros_like(Y_test)
   real_y_predict = np.zeros_like(y_predict)

   #Fill the 2D arrays with the real value and the predicted value by reversing the normalization process
   for i in range(Y_test.shape[0]):
       y = Y_test[i]
       predict = y_predict[i]
       real_y_test[i] = (y+1)*unnormalized_bases[i]
       real_y_predict[i] = (predict+1)*unnormalized_bases[i]

   #Plot of the predicted prices versus the real prices
   fig = plt.figure(figsize=(10,5))
   ax = fig.add_subplot(111)
   ax.set_title("Bitcoin Price Over Time")
   plt.plot(real_y_predict, color = 'green', label = 'Predicted Price')
   plt.plot(real_y_test, color = 'red', label = 'Real Price')
   ax.set_ylabel("Price (USD)")
   ax.set_xlabel("Time (Days)")
   ax.legend()
   
   return y_predict, real_y_test, real_y_predict, fig


分析价格变化


def price_change(Y_daybefore, Y_test, y_predict):
   """
   Calculate the percent change between each value and the day before
   
   Arguments:
   Y_daybefore -- A tensor of shape (267,) that represents the prices of each day before each price in Y_test
   Y_test -- A tensor of shape (267,) that represents the normalized y values of the testing data
   y_predict -- A tensor of shape (267,) that represents the normalized y values of the model's predictions
   
   Returns:
   Y_daybefore -- A tensor of shape (267, 1) that represents the prices of each day before each price in Y_test
   Y_test -- A tensor of shape (267, 1) that represents the normalized y values of the testing data
   delta_predict -- A tensor of shape (267, 1) that represents the difference between predicted and day before values
   delta_real -- A tensor of shape (267, 1) that represents the difference between real and day before values
   fig -- A plot representing percent change in bitcoin price per day,
   """
 
 #Reshaping Y_daybefore and Y_test
   Y_daybefore
= np.reshape(Y_daybefore, (-1, 1))
   Y_test = np.reshape(Y_test, (-1, 1))

   #The difference between each predicted value and the value from the day before
   delta_predict = (y_predict - Y_daybefore) / (1+Y_daybefore)

   #The difference between each true value and the value from the day before
   delta_real = (Y_test - Y_daybefore) / (1+Y_daybefore)

   #Plotting the predicted percent change versus the real percent change
   fig = plt.figure(figsize=(10, 6))
   ax = fig.add_subplot(111)
   ax.set_title("Percent Change in Bitcoin Price Per Day")
   plt.plot(delta_predict, color='green', label = 'Predicted Percent Change')
   plt.plot(delta_real, color='red', label = 'Real Percent Change')
   plt.ylabel("Percent Change")
   plt.xlabel("Time (Days)")
   ax.legend()
   plt.show()
   
   return Y_daybefore, Y_test, delta_predict, delta_real, fig


分析价格百分比变化


def binary_price(delta_predict, delta_real):
   """
   Converts percent change to a binary 1 or 0, where 1 is an increase and 0 is a decrease/no change
   
   Arguments:
   delta_predict -- A tensor of shape (267, 1) that represents the predicted percent change in price
   delta_real -- A tensor of shape (267, 1) that represents the real percent change in price
   
   Returns:
   delta_predict_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_predict
   delta_real_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_real
   """
   #Empty arrays where a 1 represents an increase in price and a 0 represents a decrease in price
   delta_predict_1_0 = np.empty(delta_predict.shape)
   delta_real_1_0 = np.empty(delta_real.shape)

   #If the change in price is greater than zero, store it as a 1
   #If the change in price is less than zero, store it as a 0
   for i in range(delta_predict.shape[0]):
       if delta_predict[i][0] > 0:
           delta_predict_1_0[i][0] = 1
       else:
           delta_predict_1_0[i][0] = 0
   for i in range(delta_real.shape[0]):
       if delta_real[i][0] > 0:
           delta_real_1_0[i][0] = 1
       else:
           delta_real_1_0[i][0] = 0    

   return delta_predict_1_0, delta_real_1_0


比较预测值和实际数据


def find_positives_negatives(delta_predict_1_0, delta_real_1_0):
   """
   Finding the number of false positives, false negatives, true positives, true negatives
   
   Arguments:
   delta_predict_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_predict
   delta_real_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_real
   
   Returns:
   true_pos -- An integer that represents the number of true positives achieved by the model
   false_pos -- An integer that represents the number of false positives achieved by the model
   true_neg -- An integer that represents the number of true negatives achieved by the model
   false_neg -- An integer that represents the number of false negatives achieved by the model
   """
 
 #Finding the number of false positive/negatives and true positives/negatives
   true_pos
= 0

   false_pos = 0
   true_neg = 0
   false_neg = 0
   for i in range(delta_real_1_0.shape[0]):
       real = delta_real_1_0[i][0]
       predicted = delta_predict_1_0[i][0]
       if real == 1:
           if predicted == 1:
               true_pos += 1
           else:
               false_neg += 1
       elif real == 0:
           if predicted == 0:
               true_neg += 1
           else:
               false_pos += 1
   return true_pos, false_pos, true_neg, false_neg


计算模型评估指标




def calculate_statistics(true_pos, false_pos, true_neg, false_neg, y_predict, Y_test):
  """
  Calculate various statistics to assess performance
 
  Arguments:
  true_pos -- An integer that represents the number of true positives achieved by the model
  false_pos -- An integer that represents the number of false positives achieved by the model
  true_neg -- An integer that represents the number of true negatives achieved by the model
  false_neg -- An integer that represents the number of false negatives achieved by the model
  Y_test -- A tensor of shape (267, 1) that represents the normalized y values of the testing data
  y_predict -- A tensor of shape (267, 1) that represents the normalized y values of the model's predictions
 
  Returns:
  precision -- How often the model gets a true positive compared to how often it returns a positive
  recall -- How often the model gets a true positive compared to how often is hould have gotten a positive
  F1 -- The weighted average of recall and precision
  Mean Squared Error -- The average of the squares of the differences between predicted and real values
  """
  precision
= float(true_pos) / (true_pos + false_pos)
  recall = float(true_pos) / (true_pos + false_neg)
  F1 = float(2 * precision * recall) / (precision + recall)
  #Get Mean Squared Error
  MSE = mean_squared_error(y_predict.flatten(), Y_test.flatten())

  return precision, recall, F1, MSE


结合在一起:可视化


终于可以看看我们的成果啦!


首先是预测价格vs实际价格:

y_predict, real_y_test, real_y_predict, fig1 = test_model(model, X_test, Y_test, unnormalized_bases)

#Show the plot
plt.show(fig1)



然后是预测的百分比变化vs实际的百分比变化,值得注意的是,这里的预测相对实际来说波动更大,这是模型可以提高的部分:


Y_daybefore, Y_test, delta_predict, delta_real, fig2 = price_change(Y_daybefore, Y_test, y_predict)

#Show the plot
plt.show(fig2)


最终模型表现是这样的:


Precision: 0.62
Recall: 0.553571428571
F1 score: 0.584905660377
Mean Squared Error: 0.0430756924477


怎么样,看完有没有跃跃欲试呢?


代码下载地址:

https://github.com/llSourcell/ethereum_future/blob/master/A%20Deep%20Learning%20Approach%20to%20Predicting%20Cryptocurrency%20Prices.ipynb

原视频地址:

https://www.youtube.com/watch?v=G5Mx7yYdEhE


作    者Siraj Raval 大数据文摘经授权译制

翻    译 糖竹子、狗小白、邓子稷

时间轴 | 韩振峰、Barbara、菜菜Tom

监    制 | 龙牧雪


【今日机器学习概念】

Have a Great Definition

志愿者介绍

回复志愿者”加入我们


关注公众号:拾黑(shiheibook)了解更多

[广告]赞助链接:

四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/

公众号 关注网络尖刀微信公众号
随时掌握互联网精彩
赞助链接